首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
3‐Ethynylthiophene (3ETh) was polymerized with Rh(I) complexes: [Rh(cod)acac], [Rh(nbd)acac], [Rh(cod)Cl]2, and [Rh(nbd)Cl]2 (cod is η22‐cycloocta‐1,5‐diene and nbd η22‐norborna‐2,5‐diene), used as homogeneous catalysts and with the last two complexes anchored on mesoporous polybenzimidazole (PBI) beads: [Rh(cod)Cl]2/PBI and [Rh(nbd)Cl]2/PBI used as heterogeneous catalysts. All tested catalyst systems give high‐cis poly(3ETh). In situ NMR study of homogeneous polymerizations induced with [Rh(cod)acac] and [Rh(nbd)acac] complexes has revealed: (i) a transformation of acac ligands into free acetylacetone (Hacac) occurring since the early stage of polymerization, which suggests that this reaction is part of the initiation, (ii) that the initiation is rather slow in both of these polymerization systems, and (iii) a release of cod ligand from [Rh(cod)acac] complex but no release of nbd ligand from [Rh(nbd)acac] complex during the polymerization. The stability of diene ligand binding to Rh‐atom in [Rh(diene)acac] catalysts remarkably affects only the molecular weight but not the yield of poly(3ETh). The heterogeneous catalyst systems also provide high‐cis poly(3ETh), which is of very low contamination with catalyst residues since a leaching of anchored Rh complexes is negligible. The course of heterogeneous polymerizations is somewhat affected by limitations arising from the diffusion of monomer inside catalyst beads. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 2776–2787, 2008  相似文献   

2.
The versatile synthetic precursor methanolate‐bridged title rhodium complex, [Rh2(CH3O)2(C12H6F4)2] or [Rh(μ‐OCH3)(tfbb)]2 [tfbb = tetrafluorobenzobarrelene or 3,4,5,6‐tetrafluorotricyclo[6.2.2.02,7]dodeca‐2(7),3,5,9,11‐pentaene], has been structurally characterized. The asymmetric unit contains half a molecule that can be expanded via a twofold axis. The title compound has been shown to be a dinuclear rhodium complex where each metal centre is coordinated by two O atoms from two bridging methanolate groups and by the olefinic bonds of a tfbb ligand. Comparison of the bite angles of tfbb, norbornadiene (nbd) and cyclooctadiene (cod) olefins in their η4‐coordination to rhodium reveals similarities between the tfbb and nbd ligands, which are much more rigid than cod. The short distance found between the distorted square‐planar metal centres [2.8351 (4) Å] has been related to the syn conformation of the folded core `RhORhO' ring.  相似文献   

3.
The tetrasilyl ethers calix[4]areneOSiMe2R (R = Me, H, vinyl, allyl) were prepared by salt elimination; the calix[4]arene was deprotonated with sodium hydride and subsequently reacted with chlorosilanes ClSiMe2R. In general, DMF was chosen as solvent in order to steer the reactions in terms of a preference for the cone‐conformation of the products. In the case of calix[4]areneOSiMe3 both, partial‐cone‐ and cone‐conformers, were synthesised. All products were characterised by NMR (1H, 13C, 29Si) spectroscopy, mass spectrometry and single‐crystal X‐ray diffraction.  相似文献   

4.
The η2‐thio‐indium complexes [In(η2‐thio)3] (thio = S2CNC5H10, 2 ; SNC4H4, (pyridine‐2‐thionate, pyS, 3 ) and [In(η2‐pyS)22‐acac)], 4 , (acac: acetylacetonate) are prepared by reacting the tris(η2‐acac)indium complex [In(η2‐acac)3], 1 with HS2CNC5H10, pySH, and pySH with ratios of 1:3, 1:3, and 1:2 in dichloromethane at room temperature, respectively. All of these complexes are identified by spectroscopic methods and complexes 2 and 3 are determined by single‐crystal X‐ray diffraction. Crystal data for 2 : space group, C2/c with a = 13.5489(8) Å, b = 12.1821(7) Å, c = 16.0893(10) Å, β = 101.654(1)°, V = 2600.9(3) Å3, and Z = 4. The structure was refined to R = 0.033 and Rw = 0.086; Crystal data for 3 : space group, P21 with a = 8.8064 (6) Å, b = 11.7047 (8) Å, c = 9.4046 (7) Å, β = 114.78 (1)°, V = 880.13(11) Å3, and Z = 2. The structure was refined to R = 0.030 and Rw = 0.061. The geometry around the metal atom of the two complexes is a trigonal prismatic coordination. The piperidinyldithiocarbamate and pyridine‐2‐thionate ligands, respectively, coordinate to the indium metal center through the two sulfur atoms and one sulfur and one nitrogen atoms, respectively. The short C‐N bond length in the range of 1.322(4)–1.381(6) Å in 2 and C‐S bond length in the range of 1.715(2)–1.753(6) Å in 2 and 3 , respectively, indicate considerable partial double bond character.  相似文献   

5.
1,8‐Bis[(diethylamino)phosphino]naphthalene ( 1 ) reacted with dry methanol in dichloromethane to form the new bis‐phosphonite ligand 1,8‐bis[(dimethoxy)phosphino]naphthalene (dmeopn, 2 ). By oxidation of 2 with H2O2 · (H2N)2C(:O) the corresponding bis‐phosphonate, 1,8‐bis[(dimethoxy)phosphoryl]naphthalene ( 3 ), was obtained quantitatively. Reaction of 3 with phosphorus trichloride unexpectedly furnished a 2.4 : 1 mixture of the bis‐phosphonate anhydrides rac‐ and meso‐1,3‐dimethoxy‐1,3‐dioxo‐2,3‐dihydro‐1,3‐diphospha‐2‐oxaphenalene (rac‐ 4 and meso‐ 4 ) from which rac‐ 4 could be fractionally crystallised. The bis‐phosphonite 2 behaved as a normal bidentate chelate ligand towards Mo0 and PdII, and furnished the complexes [(dmeopn)Mo(CO)4] ( 5 ) and [(dmeopn)PdCl2] ( 6 ) when treated with [(nor)Mo(CO)4] or [(cod)PdCl2] (nor = norbornadiene, cod = cycloocta‐1,8‐diene). Attempts to prepare 1,8‐diphosphinonaphthalene ( 7 ) by reducing 2 or 3 with LiAlH4 or LiAlH4/TMSCl (1 : 1) (TMSCl = trimethyl chlorosilane) in THF led to inseparable mixtures of phosphorus‐containing products. Compounds 2 – 6 were characterised by 1H‐, 13C‐, and 31P‐NMR spectroscopy, IR spectroscopy, mass spectrometry and elemental analysis. X‐ray crystal structure analyses were carried out for the bis‐phosphonate anhydride rac‐ 4 and the palladium(II) complex 6 . The geometry of compound rac‐ 4 , in which the phosphorus atoms are connected by an oxygen atom, reveals a relief of strain from the bis‐phosphine 1 , whereas the 1,8‐P,P′‐naphthalenediyl group in 6 is surprisingly distorted; the P atoms are displaced from the naphthalene best plane by –46.7 and 54.5 pm.  相似文献   

6.
Two novel chiral well‐defined rhodium complexes, Rh(cod)(L‐Phe) (cod = 1,5‐cyclooctadiene, Phe = phenylalanine) and Rh(cod)(L‐Val) (Val = valine) were synthesized, isolated by recrystallization, and characterized. The helix‐sense‐selective polymerization (HSSP) of an achiral 3,4,5‐trisubstituted phenylacetylene, p‐dodecyloxy‐m,m‐dihydroxyphenylacetylene (DoDHPA) was examined by using the two Rh complexes as catalysts. These catalysts provided high molecular weight polymers (Mw 28 × 104?45 × 104) in about 40%–85% yields. The resulting polymers exhibited a bisignated CD signal at about 300 nm and a broad signal around 470 nm, indicating that they have preferential one‐handed helical structure. The present catalysts achieved larger molar ellipticity up to [θ]310 = 13.0 × 104 deg cm2/dmol than those with binary chiral catalytic systems, [Rh(cod)Cl]2/(L‐phenylalaninol), [Rh(cod)Cl]2/(L‐valinol), and [Rh(nbd)Cl]2/(R)‐PEA. All these results manifest that the present, well‐defined Rh complexes serve as excellent catalysts for the HSSP of DoDHPA. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 2346–2351  相似文献   

7.
The reaction of cationic diolefinic rhodium(I) complexes with 2‐(diphenylphosphino)benzaldehyde (pCHO) was studied. [Rh(cod)2]ClO4 (cod=cycloocta‐1,5‐diene) reacted with pCHO to undergo the oxidative addition of one pCHO with (1,2,3‐η)cyclooct‐2‐en‐1‐yl (η3‐C8H13) formation, and the coordination of a second pCHO molecule as (phosphino‐κP)aldehyde‐κO(σ‐coordination) chelate to give the 18e acyl(allyl)rhodium(III) species [Rh(η3‐C8H13)(pCO)(pCHO)]ClO4 (see 1 ). Complex 1 reacted with [Rh(cod)(PR3)2]ClO4 (R=aryl) derivatives 3 – 6 to give stable pentacoordinated 16e acyl[(1,2,3‐η)‐cyclooct‐2‐en‐1‐yl]rhodium(III) species [Rh(η3‐C8H13)(pCO)(PR3)]ClO4 7 – 10 . The (1,2,3‐η)‐cyclooct‐2‐en‐1‐yl complexes contain cis‐positioned P‐atoms and were fully characterized by NMR, and the molecular structure of 1 was determined by X‐ray crystal diffraction. The rhodium(III) complex 1 catalyzed the hydroformylation of hex‐1‐ene and produced 98% of aldehydes (n/iso=2.6).  相似文献   

8.
The reaction between 4‐(4‐methyl­phenyl)­but‐3‐en‐2‐one and amino­guanidine produced an unexpected product of formula C12H15N3O, consisting of a carbox­amide moiety joined to a substituted pyrazoline ring at one of the N atoms. The pyrazoline ring adopts a flat‐envelope conformation and the substituted phenyl ring is oriented almost perpendicular to the heterocycle. The carbonyl O atom has partial anionic character as a result of the transfer of π density from the two adjacent sp2 N atoms and is involved in an intermolecular hydrogen bond with the amide group.  相似文献   

9.
The synthesis and characterisation of a series of new Rh and Au complexes bearing 1,2,4‐triazol‐3‐ylidenes with a N‐2,4‐dinitrophenyl (N‐DNP) substituent are described. IR, NMR, single‐crystal X‐ray diffraction and computational analyses of the Rh complexes revealed that the N‐heterocyclic carbenes (NHCs) behaved as strong π acceptors and weak σ donors. In particular, a natural bond orbital (NBO) analysis revealed that the contributions of the Rh→Ccarbene π backbonding interaction energies (ΔEbb) to the bond dissociation energies (BDE) of the Rh? Ccarbene bond for [RhCl(NHC)(cod)] (cod=1,5‐cyclooctadiene) reached up to 63 %. The Au complex exhibited superior catalytic activity in the intermolecular hydroalkoxylation of cyclohexene with 2‐methoxyethanol. The NBO analysis suggested that the high catalytic activity of the AuI complex resulted from the enhanced π acidity of the Au atom.  相似文献   

10.
2, 4‐Dimethylpenta‐1, 3‐diene and 2, 4‐Dimethylpentadienyl Complexes of Rhodium and Iridium The complexes [(η4‐C7H12)RhCl]2 ( 1 ) (C7H12 = 2, 4‐dimethylpenta‐1, 3‐diene) and [(η4‐C7H12)2IrCl] ( 2 ) were obtained by interaction of C7H12 with [(η2‐C2H4)2RhCl]2 and [(η2‐cyclooctene)2IrCl]2, respectively. The reaction of 1 or 2 with CpTl (Cp = η5‐C5H5) yields the compounds [CpM(η4‐C7H12)] ( 3a : M = Rh; 3b : M = Ir). The hydride abstraction at the pentadiene ligand of 3a , b with Ph3CBF4 proceeds differently depending on the solvent. In acetone or THF the “half‐open” metallocenium complexes [CpM(η5‐C7H11)]BF4 ( 4a : M = Rh; 4b : M = Ir) are obtained exclusively. In dichloromethane mixtures are produced which additionally contain the species [(η5‐C7H11)M(η5‐C5H4CPh3)]BF4 ( 5a : M = Rh; 5b : M = Ir) formed by electrophilic substitution at the Cp ring, as well as the η3‐2, 4‐dimethylpentenyl compound [(η3‐C7H13)Rh{η5‐C5H3(CPh3)2}]BF4 ( 6 ). By interaction of 2, 4‐dimethylpentadienyl potassium with 1 or 2 the complexes [(η4‐C7H12)M(η5‐C7H11)] ( 7a : M = Rh; 7b : M = Ir) are generated which show dynamic behaviour in solution; however, attempts to synthesize the “open” metallocenium cations [(η5‐C7H11)2M]+ by hydride abstraction from 7a , b failed. The new compounds were characterized by elemental analysis and spectroscopically, 4b and 5a also by X‐ray structure analysis.  相似文献   

11.
The title compound, dicarbonyl‐1κ2C‐di‐μ‐chloro‐1:2κ4Cl‐[cis,cis‐2(η4)‐1,5‐cyclo­octa­diene]­di­rhodium(I), [Rh2Cl2(C8H12)(CO)2], consists of a di­chloro‐bridged dimer of rhodium, with a non‐bonded Rh?Rh distance of 3.284 (2) Å. One Rh atom is coordinated to two carbonyl ligands, while the other Rh atom is coordinated to the cyclo­octa­diene moiety.  相似文献   

12.
The title compound, [Cd(NCS)2(C13H10N4OS)2]n, contains SCN anions acting as end‐to‐end bridging ligands which utilize both S and N atoms to link cadmium(II) centers into one‐dimensional double chains. The multidentate 5‐(4‐pyridyl)‐2‐(2‐pyridylmethylsulfanyl)‐1,3,4‐oxadiazole ligands behave as monodentate terminal ligands, binding metal centers only through the N atoms of the 4‐pyridyl groups. Two types of eight‐membered rings are formed by two SCN anions bridging CdII centers, viz. planar and chair conformation, which are alternately disposed along the same chain. Finally, chains define a two‐dimensional array through two different interchain π–π stacking interactions.  相似文献   

13.
2,2′‐Anhydro‐1‐(3′,5′‐di‐O‐acetyl‐β‐D‐arabinofuranosyl)uracil, C13H14N2O7, was obtained by refluxing 2′,3′‐O‐(methoxymethylene)uridine in acetic anhydride. The structure exhibits a nearly perfect C4′‐endo (4E) conformation. The best four‐atom plane of the five‐membered furanose ring is O—C—C—C, involving the C atoms of the fused five‐membered oxazolidine ring, and the torsion angle is only −0.4 (2)°. The oxazolidine ring is essentially coplanar with the six‐membered uracil ring [r.m.s. deviation = 0.012 (5) Å and dihedral angle = −3.2 (3)°]. The conformation at the exocyclic C—C bond is gauche–trans which is stabilized by various C—H...π and C—O...π interactions.  相似文献   

14.
New calix[4]arene‐based bis‐phosphonites, bis‐phosphites and bis‐O‐acylphosphites were synthesized and characterized. Treatment of these P‐ligands with selected rhodium and platinum precursors led to mononuclear complexes that were satisfactorily characterized. The solid state structure of the dirhodium(I) complex 14 has been determined by X‐ray diffraction. The two rhodium centres are bridged by two chloro ligands; one rhodium atom is further coordinated by calix[4]arene phosphorus atoms and the other by cyclooctadiene. The new calix[4]arene P‐ligands were tested in the Rh(I) catalyzed hydroformylation of 1‐octene. All Rh(I) complexes catalyzed the reaction leading to high chemoselectivity with regard to the formation of aldehydes. Yields and n/iso‐selectivities depended on the reaction conditions. Average yields of 80 % and n/iso‐ratios of about 1.3 to 1.5 were observed. High yields of aldehydes can be achieved using the methoxy substituted P‐ligands at low Rh:ligand ratios.  相似文献   

15.
In the title compound, [Mn(C5H2N2O4)(H2O)2]n, the MnII ion has a distorted octahedral geometry and the 4‐oxido‐2‐oxo‐1,2‐dihydropyrimidine‐5‐carboxylate (Hiso2−) anion acts as a μ34‐bridging ligand. Two oxo O atoms from different Hiso2− ligands bridge two MnII ions, forming centrosymmetric dinuclear building blocks. Each dinuclear building block interacts with another four by the coordination of the oxide groups and carboxylate O atoms, producing a two‐dimensional framework in the ab plane. Hydrogen bonds further extend the two‐dimensional sheets into a three‐dimensional supramolecular framework.  相似文献   

16.
Contributions to the Chemistry of Phosphorus. 243 On the Oxocyclotetraphosphanes (PBut)4O1–4 Under suitable conditions, the reaction of tetra‐tert‐butylcyclotetraphosphane, (PBut)4, with dry atmospheric oxygen gives rise to the corresponding monoxide (PBut)4O ( 1 ) which has been isolated by column chromatography. The reaction with hydrogen peroxide furnishes a mixture of oxocyclotetraphosphanes (PBut)4O1–4 consisting of two constitutionally isomeric dioxides (PBut)4O2 ( 2 a , 2 b ), the trioxide (PBut)4O3 ( 3 ), and the tetraoxide (PBut)4O4 ( 4 ), in addition to 1 . According to the 31P NMR parameters the oxygen atoms are exclusively exocyclically bonded to the phosphorus four‐membered ring. Which of the P atoms are present as λ5‐phosphorus follows from the different low‐field shifts of the individual P nuclei compared with the starting compound. Accordingly, 1 is 1,2,3,4‐Tetra‐tert‐butyl‐1‐oxocyclotetraphosphane, 2 a and 2 b are 1,2,3,4‐Tetra‐tert‐butyl‐1,2‐dioxo‐ and ‐1,3‐dioxocyclotetraphosphane, respectively, 3 is 1,2,3,4‐Tetra‐tert‐butyl‐1,2,3‐trioxocyclotetraphosphane, and 4 is 1,2,3,4‐Tetra‐tert‐butyl‐1,2,3,4‐tetraoxocyclotetraphosphane. When the oxidation reaction proceeds a fission of the P4 ring takes place.  相似文献   

17.
Novel macrocyclic monooxa-diselkylene-1,ω-dioxy substituted calix[4]arene derivatives 1a-5a were synthesized by the reaction of calix[4]arene dibromides 1-5 with the disodium salt of bis(2-selenylethyl)ether in the yields between 28% and 64%. Their structures were characterized by proton and carbon NMR spectra. X-Ray structure analysis of la further confirmed the cone conformation of compounds 1a-5a. An interesting host-guest complex of la with dichloromethane via CH/π and C1/π interactions was elucidated. Extraction experiments showed that these novel monooxa-diselkylene-1,ω-dioxy substituted calix[4]arene derivatives 1a-5a had strong extraction ability towards mercury ion. The interaction of Hg^2+with the calix ligand has also been investigated by 1^H NMR titration.  相似文献   

18.
The diamide exo, exoβ‐P4S3(NHCH(Me)Ph)2 has been made in solution using enantiomerically pure or racemic PhCH(Me)NH2, and its three diastereomers characterised by complete analysis of their 31P{1H} NMR spectra.The unsymmetric diastereomer contains phosphorus atoms, made chemically non‐equivalent by the chirality of the substituents, which show a large 2J(P—P—P) coupling to each other (225.2 Hz).  相似文献   

19.
Co‐pyrolysis of B2Br4 with PBr3 at 480 °C gave, in addition to the main product closo‐1,2‐P2B4Br4, conjuncto‐3,3′‐(1,2‐P2B4Br3)2 ( 1 ) and the twelve‐vertex closo‐1,7‐P2B10Br10 ( 2 ), both in low yields. X‐ray structure determination for 1 [triclinic, space‐group P1 with a = 7.220(2) Å, b = 7.232(2) Å, c = 8.5839(15) Å, α = 97.213(15)°, β = 96.81(2)°, γ = 94.07(2)° and Z = 1] confirmed that 1 adopts a structure consisting of two symmetrically boron–boron linked distorted octahedra with the bridging boron atoms in the 3,3′‐positions and the phosphorus atoms in the 1,2‐positions. The intercluster 2e/2c B–B bond length is 1.61(3) Å. The shortest boron–boron bond within the cluster framework is 1.68(2) Å located between the boron atoms antipodal to the phosphorus atoms. The icosahedral phosphaborane 2 was characterized by 11B‐11B COSY NMR spectroscopy showing cross peaks indicative for the isomer with the phosphorus atoms in 1,7‐positions. Both the X‐ray data of 1 and the NMR spectroscopic data of 1 and 2 give further evidence for the influence of an antipodal effect of heteroatoms to cross‐cage boron atoms and, vice versa, of an additional shielding of the phosphorus atoms caused by B‐Hal substitution at the boron positions trans to phosphorus.  相似文献   

20.
The synthesis of two 1,3‐bis(4‐ethynylbenzyloxy)calix[4]arenes, 5,11,17,23‐tetrakis(1,1‐dimethylethyl)‐25,27‐bis(4‐ethynylbenzyloxy)‐26,28‐dihydroxycalix[4]arene ( 1 ) and 25,27‐bis(4‐ethynylbenzyloxy)‐26,28‐dihydroxycalix[4]arene ( 2 ), was accomplished through Sonogashira coupling of appropriate calixarene derivatives. Methods for the polymerization of these bifunctional building blocks with Rh(I) as a catalyst, leading ultimately to conjugated polymers having calix[4]arene units incorporated into the main chain, were explored. Calixarenes 1 and 2 were efficiently polymerized with rhodium‐based initiators and afforded the conjugated polymers poly{5,11,17,23‐tetrakis(1,1‐dimethylethyl)‐25,27‐bis(4‐ethynylbenzyloxy)‐26,28‐dihydroxycalix[4]arene} ( poly 1 ) and poly{25,27‐bis(4‐ethynylbenzyloxy)‐26,28‐dihydroxycalix[4]arene}. Depending on the conditions, high conversions and good yields were obtained. The effects of adding cocatalysts (NHEt2 and/or PPh3) were studied in connection with the number‐average molecular weight and the molecular weight distribution of the resultant polymer ( poly 1 ) and tentatively correlated with the formation of low‐molecular‐weight materials. A catalytic system containing triphenylphosphine as the sole additive ([Rh(nbd)Cl]2; [Rh]/[PPh3] = 0.5) proved to be the best for the polymerization of ptert‐butylcalixarene compound 1 . Linear polymers having high number‐average molecular weights (up to 1.1 × 105 g mol?1) with low polydispersities were produced under these conditions. For debutylated homologue 2 , its polymerization was best carried out in the absence of any added cocatalyst. A cyclopolymerization route, comprising the intramolecular ring closing of the calix[4]arene pendant ethynyl groups followed by an intermolecular propagation step, is advanced to explain the results. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 7054–7070, 2006  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号