首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
Polynuclear Iron/Tantalum and Tantalum Complexes with Asn Ligands Starting with [Cp@Ta(CO)4] ( 1 ) (Cp@ = C5H3tBu2‐1,3) and As4 or (tBuAs)4 ( 2 ) its thermolysis at 190 °C in decalin gives [{Cp@Ta}2(μ‐η4 : η4‐As8)] ( 3 ), which is also formed according to equation (2) in addition to [{Cp@Ta}3As6] ( 5 ). The reaction of 1 or [{Cp*(OC)2Fe}2] ( 6 ) with 3 affords 5 or [{Cp*Fe}{Cp@Ta}As5] ( 8 ) demonstrating the use of 3 as Asn source. 8 can also be synthesized from 1 and [Cp*Fe(η5‐As5)] ( 7 ) for which the cothermolysis of 2 and 6 gives a better yield.  相似文献   

2.
Abstract. The cyclopentadienyl‐substituted iron‐bismuth complexes [{Cp(CO)2Fe}BiCl2] ( 1 ), [{Cp(CO)2Fe}BiBr2] ( 2 ), [{Cp′′(CO)2Fe}BiBr2] ( 3 ) and [{Cp*(CO)2Fe}BiBr2] ( 4 ) were prepared with high yields starting from [Cpx(CO)2Fe]2 [Cpx = C5H5 (Cp), C5H3‐1, 3‐tBu2 (Cp′′), C5Me5 (Cp*)] and the corresponding bismuth halides. The single crystal X‐ray structure analyses of compounds 2 – 4 are reported. Comparison of their solubility demonstrates that the steric hindrance in this type of compounds is only slightly higher for compound 3 compared with compound 2 but significantly lower compared with the Cp* derivative 4 . Compounds 1 – 4 react with nucleophililic reagents such as KOtBu, NaOCH2CH2OCH3, and NaOSiMe3 as well as with water in the presence of an amine to give a mixture of [{Cpx(CO)2Fe}BiX] (X = Cl, Br) and [{Cpx(CO)2Fe}3Bi]. In case of a reaction with nBu4NCl and DMAP (dimethylaminopyridine) no such dismutation is observed. Instead the complexes [{Cp(CO)2Fe}BiBr2(DMAP)2] ( 5 ), [NnBu4]2[{{Cp(CO)2Fe}BiBr3}2] ( 6 ) and [NnBu4]2[{{Cp(CO)2Fe}BiCl3}2] ( 7 ) were isolated and characterized by single‐crystal X‐ray diffraction.  相似文献   

3.
Niobium and Tantalum Complexes with P2 and P4 Ligands The photolysis of [Cp″Ta(CO)4] 1 (Cp″ = C5H3tBu2?1,3) and P4 affords Cp″(CO)2Ta(η4?P4) 2 , [{Cp″(CO)Ta}2(m??η2:2?P2)2] 3 and [Cp3″(CO)3Ta3(P2)2] 4 . In a photochemical reaction 2 and [Cp*Nb(CO)4] 5 form [{Cp*(CO)Nb}{Cp″(CO)Ta}(m??η2:2?P2)2] 6 and [{Cp*(CO)2Nb} {Cp*Nb}{Cp″(CO)Ta}(m?32:1:1?P2)2] 7 , a compound with the novel m?32:2:1?P2-coordination mode. The reaction of 2 and [Cp*Co(C2H4)2] 8 leads to [{Cp*Co} {Cp″(CO)Ta}(m??η2:2?P2)2] 9 , a heteronuclear complex with an ?early”? and a ?late”? transition metal. Complexes 2, 3, 7 and 9 have been further characterized by X-ray structure analyses.  相似文献   

4.
Triangulated Dodecahedral Heterotrimetallic‐ and ‐tetrametallic Iron–Ruthenium Clusters with CpR and Pn Ligands (n = 5, 4) The cothermolysis of [Cp*Fe(η5‐P5)] ( 1 ) and [{Cp″(OC)2Ru}2](Ru–Ru) ( 2 ), Cp″ = C5H3But2‐1,3, affords low yields of [Cp″Ru(η5‐P5)] ( 3 ) and [{Cp″Ru}2P4] ( 4 ) as well as the triangulated dodecahedral hetero‐ and homotrimetallic clusters [{Cp″Ru}2{Cp*Fe}P5] ( 5 ), [{Cp″Ru}3P5] ( 6 ), [{Cp*Fe}2{Cp″Ru}P5] ( 7 ) and the tetranuclear compound [{Cp″Ru}3{Cp*Fe}P4] ( 8 ). X‐ray crystallographic studies show that the P5 ligand in the distorted M2M′P5‐triangulated dodecahedra of 5 and 7 offers an unusual novel coordination mode derived from the educt 1 .  相似文献   

5.
The hexachalcogenodistannates K6[SnIII2Se6] or Li4[SnIV2Te6]·8en were recently reported to simultaneously act as mild oxidants and chalcogenide sources in reactions with CoCl2/LiCp* (Cp* = pentamethylcyclopentadienide) while the Sn—E (E = Se, Te) fragment is not kept in the products, e.g. [(Cp*Co)3(μ3‐Se)2], [(Cp*Co)3(μ3‐Se)2][Cl2Co(μ2‐Cl)2Li(thf)2] or [(Cp*Co)4(μ3‐Te)4]. In search of related reagents with possibly different reaction behavior, we isolated and crystallographically characterized isotypic compounds [enH]4[SnIV2Se6]�en ( 1 ), and [enH]4[SnIV2Te6en ( 2 ) (en = 1, 2‐diaminoethane), that result from an uncommon disproportion/re‐arrangement reaction: distannate(III) K6[Sn2E6] (E = Se, Te) was reacted with en·2HCl to yield 1 or 2 under disproportion of SnIII to SnII and SnIV. Another pathway was necessary to synthesize the respective but solvent‐free thiostannate [enH]4 [SnIV2S6] ( 3 ), since the phase “K6[Sn2S6]” is unknown. This second method started out from SnCl4·2THF and S(SiMe3)2 in en solution. However, using E(SiMe3)2 (E = Se, Te) instead of S(SiMe3)2, 1 and 2 are also obtained this way. 1—3 are the first chalcogenostannates that exhibit exclusively [enH]+ counterions. The compounds were characterized by means of X‐ray crystallography and NMR spectroscopy. They seem to be suitable for reactions towards group 8‐10 metal complexes. Preliminary experiments indicate that the binary anions 1 — 3 coordinated by 1‐aminoethylammonium ions react more slowly compared to the anionic phases tested until now.  相似文献   

6.
Na6Sn4Se11 · 22 H2O can be crystallised at –8 °C as yellow‐orange needles from the 1 : 2 H2O/CH3OH mother liquor of a superheated reaction mixture of NaOH(s), Sn and Se. The bicyclic [Sn4Se11]6– anion exhibits crystallographic C2 symmetry and is composed of corner‐bridged SnSe4 tetrahedra. Two opposite tin atoms of an Sn4Se4 8‐membered ring are linked by a common Se atom, thereby affording two 6‐membered boat‐shaped Sn3Se3 rings with a shared Sn–Se–Sn bridging unit. [Sn4Se11]6– thus represents the immediate precursor of the well‐known adamantane‐like [Sn4Se10]4– anion.  相似文献   

7.
tBuC≡P as a Synthon for the Formation of a Dinuclear Rhenium Complex with a Bridging and Chiral Phosphinidene Oxide Ligand The one‐pot reaction of [{Cp*(OC)2Re}2] (Re = Re) ( 3 ) with tBuC≡P ( 4 ) and the subsequent oxidation with (Me3Si)2O2 ( 5 ) affords [Re(CO)2C5Me4CH2{μ‐HC(But)P(O)}Re(CO)2Cp*] ( 6 ), a dinuclear rhenium complex with a bridging and chiral phosphinidene oxide ligand. Its structure was confirmed by an X‐ray crystal structure determination.  相似文献   

8.
About Selenidostannates. I Synthesis, Structure, and Properties of [Sn2Se6]4–, [Sn4Se10]4–, and [Sn3Se7]2– The selenidostannates [(C4H9)2NH2]4Sn2Se6 · H2O ( I ), [(C4H9)2NH2]4Sn4Se10 · 2 H2O ( II ) und [(C3H7)3NH]2Sn3Se7 ( III ) were prepared by hydrothermal syntheses from the elements and the amines. I crystallizes in the monoclinic spacegroup P21/n (a = 1262.9(3) pm, b = 1851.3(4) pm, c = 2305.2(4) pm, β = 104.13(3)° and Z = 4). The [Sn2Se6]4– anion consists of two edge‐sharing tetrahedra. II crystallizes in the orthorhombic spacegroup Pna21 (a = 2080.3(4) pm, b = 1308.2(3) pm, c = 2263.5(5) pm and Z = 4). The anion is formed from four SnSe4 tetrahedra which are joined by common corners to the adamantane cage [Sn4Se10]4–. III crystallizes in the orthorhombic spacegroup Pbcn (a = 1371.1(3) pm, b = 2285.4(5) pm, c = 2194.7(4) pm and Z = 8). The anion is a chain, built from edge‐sharing [Sn3Se5Se4/2]2– units, in which two corner sharing tetrahedra are connected to a trigonal bipyramid by an edge of one and a corner of the other tetrahedron. The results of the TG/DSC measurements and of temperature dependent X‐ray diffractograms reveal that I and II decompose at first by release of minor quantities of triethylammonium to compounds with layer structure and larger cell dimensions. At still higher temperature the rest of triethylammonium and H2Se is evolved, leaving SnSe2 and Se in the bulk. The former decomposes partially at the highest temperature to SnSe. In the measurements of III the complex intermediate compound was not observed. III decomposes directly to SnSe2.  相似文献   

9.
New Organometallic Indium Nitrogen Compounds. Synthesis and Crystal Structures of [{Cp(CO)3Mo}2InN(SiMe3)2] and [{Cp(CO)3Mo}In{N(SiMe3)2}2] The reaction of [{Cp(CO)3Mo}2InCl] with LiN · (SiMe3)2 leads to the formation of [{Cp(CO)3Mo}2InN · (SiMe3)2] ( 1 ). 1 is monomeric and it contains an indium atom which is coordinated in a trigonal planar manner by two {Cp(CO)3Mo} fragments and a N(SiMe3)2 group. The corresponding bis-amide [{Cp(CO)3Mo}In{N(SiMe3)2}2] ( 2 ) is prepared by the reaction of [{Cp(CO)3Mo}InCl2] with two equivalents of LiN(SiMe3)2. In analogy to 1, 2 is monomeric and it contains an indium atom in a trigonal planar coordination.  相似文献   

10.
[{Cp(CO)3Mo}4In4(PSiMe3)4], an Organometallic In4P4-Heterocubane [{Cp(CO)3Mo}InCl2] reacts with P(SiMe3)3 in THF as solvent to form [{Cp(CO)3Mo}4In4(PSiMe3)4] 1. 1 crystallizes in the space group P1 . The lattice constants (at 208 K) are: a = 1 770.1(6), b = 1 490.3(6), c = 1 317.5(6) pm, α = 76.59(4),β = 88.54(3), γ = 88.98(3)°. According to the crystal structure analysis, 1 contains a slightly distorted In4P4-core with an alternating arrangement of In and P atoms. The In atoms are coordinated roughly tetrahedrally by three PSiMe3 groups (In–P: 256.9(3)–262.3(3) pm) and a {Cp(CO)3Mo} substituent (In? Mo: 278.0(2)–279.5(3) pm).  相似文献   

11.
Hydroxo Compounds. 10. The Sodium Oxohydroxostannates(II) Na4[Sn4O(OH)10] and Na2[Sn2O(OH)4] Na4[Sn4O(OH)10] = Na4[Sn(OH)3]2[Sn2O(OH)4] ( I ) and Na2[Sn2O(OH)4] ( II ) have now been doubtlessly characterized as the first Na-hydroxostannates(II). I crystallizes monoclinic in P21/n (a = 1522.4(5) pm, b = 830.0(2) pm, c = 1276.0(3) pm, β = 104.8(2)°, Z = 4, R = 0.047, 1137 Ihkl); II crystallizes orthorhombic in P212121 (a = 1450(2) pm, b = 1665(2) pm, c = 590.7(8) pm, Z = 8, R = 0.042, 1208 Ihkl). II is identical with the compound which was described up to now as “Na[Sn(OH)3]”. The new compounds contain the complex anions [Sn(OH)3]? and [Sn2O(OH)4]2?, whose structures are now proved. The oxotetrahydroxo-distannate(II) anion [Sn2O(OH)4]2? exhibits a syn-conformation with respect to the projection along the (Sn? Sn) vector. The two compounds crystallize with pronounced layer structures, which show direct topotactical relations with one another as well as with SnO. This relates closely to the fast formation of SnO from crystals of I and II .  相似文献   

12.
Single Crystal X-Ray Analysis of Compounds with Covalent Metal—Metal Bonds. IV. Molecular and Crystal Structure of Mn2(CO)8[μ-Sn(Br) Mn(CO)5]2 Mn2(CO)8[μ-Sn(Br)Mn(CO)5]2 crystallizes in the monoclinic crystal system (a = 881.7 pm; b = 1237.6 pm; c = 1551.1 pm und β = 63.54°) in the space group P21/n with two formula units in the cell. The structure was solved by means of 2601 symmetrically independent reflections using the heavy atom method. The central molecule fragment of Mn2(CO)8 · [μ-Sn(Br)Mn(CO)5]2 consists of a planar Mn2Sn2 rhombus with a Mn? Mn-bond (Mn? Mn = 308.6(1) pm) across the metal ring. Besides the bonds to both Mn ring atoms each Sn(IV) atom has a terminal bond to a Br and Mn(CO)5 ligand, building up a distorted tetrahedron around the Sn(IV) atom. The terminal ligands in Mn2(CO)8[μ-Sn(Br)Mn(CO)5]2 are in transposition with respect to the ring. The mean values for the remaining bond distances are: Sn? Mn = 263.0(1) pm; Sn? Br = 255.4(1) pm; Mn? C = 184.4(6) pm; C? O = 113.3(7) pm. A comparison of the Sn2Mn2 ring with similar metal rings has been given.  相似文献   

13.
Weak Sn…I Interactions in the Crystal Structures of the Iodostannates [SnI4]2– and [SnI3] Iodostannate complexes can be crystallized from SnI2 solutions in polar organic solvents by precipitation with large counterions. Thereby isolated anions as well as one, two or three‐dimensional polymeric anionic substructures are established, in which SnI3 and SnI42– groups are linked by weak Sn…I interactions. Examples are the iodostannates [Me3N–(CH2)2–NMe3][SnI4] ( 1 ), (Ph4P)2[Sn2I6] ( 2 ), [Me3N–(CH2)2–NMe3][Sn2I6] ( 3 ), [Fe(dmf)6][SnI3]2 ( 4 ) and (Pr4N)[SnI3] ( 5 ), which have been characterized by single crystal X‐ray diffraction. [Me3N–(CH2)2–NMe3][SnI4] ( 1 ): a = 671.6(2), b = 1373.3(4), c = 2046.6(9) pm, V = 1887.7(11) · 106 pm3, space group Pbcm;(Ph4P)2[Sn2I6] ( 2 ): a = 1168.05(6), b = 717.06(4), c = 3093.40(10) pm, β = 101.202(4)°, V = 2541.6(2) · 106 pm3, space group P21/n;[Me3N–(CH2)2–NMe3][Sn2I6] ( 3 ): a = 695.58(4), b = 1748.30(8), c = 987.12(5) pm, β = 92.789(6)°, V = 1199.00(11) · 106 pm3, space group P21/c;[Fe(dmf)6][SnI3]2 ( 4 ): a = 884.99(8), b = 1019.04(8), c = 1218.20(8) pm, α = 92.715(7), β = 105.826(7), γ = 98.241(7), V = 1041.7(1) · 106 pm3, space group P1;(Pr4N)[SnI3] ( 5 ): a = 912.6(2), b = 1205.1(2), c = 1885.4(3) pm, V = 2073.5(7) · 106 pm3, space group P212121.  相似文献   

14.
Treatment of {HNR}2C10H6‐1, 8 [R = SiMe3 ( 1 ), CH2But ( 2 )] with Sn[N(SiMe3)2]2 afforded the cyclic stannylene Sn[{NR}2C10H6‐1, 8] [R = SiMe3 ( 3 ), CH2But ( 4 )]. From 3 and SnCl2 in THF and crystallisation from toluene, the product was the crystalline tetracyclic compound ( 5 ) as the (toluene)0.5‐solvate. Reaction of 4 with the silylene Si[(NCH2But)2C6H4‐1, 2] ( 6 ) [abbreviated as Si(NN)] in benzene and crystallisation in presence of Et2O furnished the crystalline tricyclic complex Sn[{Si(NCH2But)2C6H4‐1′, 2′}2‐{(NCH2But)2C10H6‐1, 8}] ( 7 ) as the Et2O‐solvate. Complex 5 slowly dissociated into its factors 3 and SnCl2 in toluene, but rapidly in THF. Solutions of 7 in C6D6, C7D8 or THF‐d8, studied by multinuclear, variable temperature NMR spectroscopy, revealed the presence of an equilibrium between 8 (an isomer of 7 , in which the skeletal atoms of the eight‐membered ring were , rather than the of 7 ) and 4 + 2 Si(NN), with 8 dominant in PhMe but not in THF; additionally 8 was shown to be fluxional and solutions of 8 in C6D6 or C7D8 decomposed to give the silane Si(NN)[(NCH2But)2C10H6‐1, 8], 6 and Sn metal. The X‐ray structures of 3 , 5 and 7 are presented.  相似文献   

15.
[{Cp*(OC)2Re}2(μ‐POH)], a Dinuclear Complex with a Bridging Hydroxiphosphinidene Ligand The reaction of [{Cp*(OC)2Re}44‐η1 : η1 : η1 : η1‐P2)] ( 1 ) with 0.1 m HCl gives [{Cp*(OC)2Re}2(μ‐POH)] ( 2 ), the X‐ray crystal structure of which reveals a dinuclear rhenium complex with a μ‐POH (hydroxiphosphinidene) ligand.  相似文献   

16.
Using the reduction of tin oxides with the elemental alkaline metals rubidium and cesium, stannide stannates have been synthesized which contain Zintl anions [Sn4]4— (i.e. Sn—I) and isolated oxostannate ions [SnO3]4— (i.e. Sn+II) together with further oxide ions for charge compensation. The crystal structures of the three compounds A23.6Sn7.4O13.2 = A23.6[Sn4][SnO3]3.4[O]3 (A = Rb 1a : monoclinic, P21/c, a = 2174.2(6), b = 1137.0(6), c = 2373.6(6) pm, β = 116.11(2)°, Z = 4, R1 = 0.056; A = Cs 1b : monoclinic, P21/c, a = 2042.6(6), b = 1185.4(3), c = 2481.1(7) pm, β = 97.06(2)°, Z = 4, R1 = 0.075) and Cs48Sn20O21 = Cs48[Sn4]4[SnO3]4[O]7[O2] ( 2 monoclinic, P2/c, a = 1701.8(3), b = 877.4(2), c = 4556.9(7) pm, β= 101.47(1)°, R1 = 0.093) have been determined on the basis of single crystal data. The transparency of the compounds allowed the recording of raman spectra of the anion [Sn4]4—. The 119Sn Moessbauer spectrum of the rubidium compound shows a singulet in good agreement with RbSn, overlapping a doublet caused by Sn2+ in the asymmetrical environment of the strongly electronegative oxygen ligands of SnO.  相似文献   

17.
The use of methanol as solvent is essential for the formation of the double-bookshelf-type oxide cluster [(Cp*Rh)2Mo6O20(OMe)2]2− from [{Cp*Rh(μ-Cl)Cl}2] and four equivalents of [Mo2O7]2−. The reaction proceeds via [Cp*RhMo3O8(OMe)5]. The proposed structure for this key intermediate (shown schematically) is supported by electrospray ionization mass spectrometry and labeling experiments with CD3OD as solvent. Cp*=η5-C5Me5.  相似文献   

18.
Reaction of A2CO3 (A = K, Rb) with Sn and Se in an H2O/CH3OH mixture at 115–130°C affords the isotypic selenidostannates(IV) A6Sn4Se11 _. xH2O (A = K, x = 8) 1 and 2 whose discrete [Sn4Se11]6– anions each contain two corner‐bridged ditetrahedral [Sn2Se6]4– species. Similar reaction conditions with A = Cs afford Cs2Sn2Se5 _. H2O ( 3a ) and Cs2Sn2Se5 ( 3b ) in which such [Sn2Se6]4– building blocks are connected through common Se atoms into infinite [Sn2Se52–] chains. The [Sn3Se72–] ribbons of (Et4N)2Sn3Se7 ( 4 ), formed by treating (Et4N)I with Sn and Se in methanol at 130°C, can be regarded as resulting from the condensation of [Sn2Se52–] chains with molecular [SnSe4]4– anions. The anions [Sn4Se11]6–, [Sn2Se52–], and [Sn3Se72–] represent the products of individual reaction steps on the potential condensation pathway of [Sn2Se6]4– to the lamellar selenidostannates(IV) [Sn4Se92–] or [Sn3Se72–].  相似文献   

19.
Mono- and Di-t-Butylcyclopentadienyl Carbonyl Complexes of Iron and Molybdenum — Crystal Structure of [Cp″Mo(CO)2]2 (Cp″ = n5-C5H3-t-Bu2-1,3) Cothermolysis of M(CO)m (M = Fe, m = 5; M = Mo, m = 6) with t-Bu-substituted cyclopentadienyls constitutes a simple synthesis of complexes of the type [Cp*M(CO)n]2 (CP* = n5-C5H3 (t-Bu), R, R = H, t-Bu; M = Fe, Mo; n = 2, 3). Each synthesis has an optimal temperature. The yield of Fe complexes decreases at temperatures above 130°C because of decomposition of the product. Optimal yields of [Cp*Mo(CO)3]2 are obtained at 130–140°C, whereas at 160°C complexes of the type [Cp*Mo(CO)2]2 with formal Mo? Mo triple bonds are obtained. The structure of the complexes is discussed on the basis of 1H-, 13C-NMR, IR, and mass spectrometry. The structure of [Cp″Mo(CO)2]2 (Cp″ = n5-C5H3t-Bu2-1,3) was determined by X-ray crystallography at ?95°C. It crystallises in the space group Pbca, with cell constants a = 1808.6(6), b = 1308.5(4), c = 2507.9(9) pm, Z = 8, R = 0.031 for 3794 reflections. The Mo? Mo bond length of 253.3 pm is very long for a formal triple bond. The Cp″? Mo? Mo? Cp″ axis is non-linear.  相似文献   

20.
[(Mes3Sn)2MoO4], a Monomeric Triorganotin Molybdate Mes3SnBr (Mes = 1, 3, 5‐trimethylphenyl) reacts with (NBu4)2[Mo6O19] in the presence of (NBu4)OH (in CH3CN as solvent) to form [(Mes3Sn)2MoO4]. Alternatively the title compound can be obtained from the reaction of [MoO2(acac)2] (acac = 2, 4‐pentadionate) with Mes3SnOH in isopropanol. [(Mes3Sn)2MoO4] forms monoclinic crystals, space group C2/c, with a = 2271.6(3) pm, b = 825.2(1) pm, c = 2739.9(5) pm, β = 90.96(2)°. The crystal structure consists of isolated molecules in which a tetrahedral MoO4 unit is connected to two terminal Mes3Sn groups. The Mo‐O distances range from 169.6(4) to 181.1(3) pm and the Sn‐O distance is 204.8(3) pm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号