首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The effects of the block length and block number of linear styrene–butadiene (S–B) block copolymers on their compatibilization efficiency in blending polystyrene with polybutadiene were studied. For this purpose, two sets of model S–B copolymers and both homopolymers were prepared by anionic polymerization. Diblocks, triblocks, or pentablocks of S–B copolymers were blended with these homopolymers, and the structures and some end‐use properties of the blends were determined. The supramolecular structure (determined by small‐angle X‐ray scattering), morphology (determined by transmission and scanning electron microscopy), and stress‐transfer characteristics (impact and tensile strengths) of the blends were chosen as criteria for the compatibilization efficiency of the copolymers used. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 2612–2623, 2002  相似文献   

2.
The deformation behavior of blends consisting of a styrene–butadiene star block copolymer and a polystyrene homopolymer was studied by high‐voltage electron microscopy with a tensile device. The mechanical properties and micromechanical deformation mechanisms in the star block copolymer/polystyrene blends were directly influenced by their morphology. Although the pure block copolymer deformed in a very unequal manner (because of a thin‐layer‐yielding mechanism) and revealed no local deformation zones, a transition to the formation of crazelike zones was observed in the blends. This transition in the deformation mechanisms was correlated to the abrupt change in the macroscopic strain at break of the injection‐molded specimens. At lower contents of added polystyrene, a craze‐stopping mechanism was observed, whereas the blends with higher polystyrene contents demonstrated crazing like that in pure polystyrene. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 1157–1167, 2003  相似文献   

3.
Compatibilization of polystyrene/polypropylene (PS/PP) blends, by use of a series of butadiene–styrene block copolymers was studied by means of small‐angle X‐ray scattering (SAXS) and transmission electron microscopy (TEM). The compatibilizers used differ in molar mass and the number of blocks. It was shown that the ability of a block copolymer (BC) to participate in the formation of an interfacial layer (and hence in compatibilization) is closely associated with the molar mass of styrene blocks. If the styrene blocks are long enough to form entanglements with the styrene homopolymer in the melt, then the BC is trapped inside this phase of the PS/PP blends, and its migration to the PS/PP interface is difficult. In this case, the BC does not participate in the formation of the interfacial layer nor, consequently, in the compatibilization process. On the other hand, the BC's with the molar mass of the PS blocks below the critical value are proved to be localized at the PS/PP interface. This preferable entrapping of some styrene–butadiene BC's in the PS phase of the PS/PP blend is, of course, connected to the differing miscibility of the BC blocks with corresponding components of this blend. Although the styrene block is chemically identical to the styrene homopolymer in the blend, the butadiene block is similar to the PP phase. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 1647–1656, 1999  相似文献   

4.
利用具有准单分子层灵敏度的和频振动光谱(SFG)、原子力显微镜(AFM)和接触角(CA)测定技术研究链结构和溶剂对苯乙烯(S)/丁二烯(B)嵌段共聚物表面准分子层化学结构形成的影响.结果表明,两嵌段共聚物SB比三嵌段共聚物SBS更有利于聚丁二烯(PB)组分在膜表面富集.利用PB的选择性溶剂环己烷做溶剂时,SB膜表面层完全由纯的PB组分组成,而SBS表面则是聚苯乙烯(PS)与PB二组分共存.利用PS的选择性溶剂甲苯做溶剂时,SB与SBS表面都是PS与PB二组分共存,其中SBS表面PS组分的含量更高.原因是由于溶剂影响嵌段共聚物分子在溶液中的构象从而影响溶剂挥发后聚合物表面结构的形成.  相似文献   

5.
The effect of mixing conditions on the morphology, molten‐state viscoelastic properties, and tensile impact strength of polystyrene/polyethylene (80/20) blends compatibilized with styrene–butadiene block copolymers containing various numbers and lengths of blocks was studied. Under all mixing conditions, an admixture of a styrene–butadiene block copolymer led to a finer phase structure and to an increase in the dynamic viscosity, storage modulus, and tensile impact strength. The effects were stronger for S–B diblock with a short styrene block than for S–B–S–B–S pentablock with long styrene blocks (where S represents styrene and B represents butadiene). For all blends mixed longer than 2 min, the mixing time had only a small effect on their morphology and properties. Surprisingly, the localization of S–B diblock copolymers was strongly dependent on the rate of mixing. The mixing rate had a nonnegligible effect on the viscoelastic properties of the compatibilized blends. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 609–622, 2003  相似文献   

6.
The morphology and mechanical and viscoelastic properties of a series of blends of natural rubber (NR) and styrene butadiene rubber (SBR) latex blends were studied in the uncrosslinked and crosslinked state. The morphology of the NR/SBR blends was analyzed using a scanning electron microscope. The morphology of the blends indicated a two phase structure in which SBR is dispersed as domains in the continuous NR matrix when its content is less than 50%. A cocontinuous morphology was obtained at a 50/50 NR/SBR ratio and phase inversion was seen beyond 50% SBR when NR formed the dispersed phase. The mechanical properties of the blends were studied with special reference to the effect of the blend ratio, surface active agents, vulcanizing system, and time for prevulcanization. As the NR content and time of prevulcanization increased, the mechanical properties such as the tensile strength, modulus, elongation at break, and hardness increased. This was due to the increased degree of crosslinking that leads to the strengthening of the 3‐dimensional network. In most cases the tear strength values increased as the prevulcanization time increased. The mechanical data were compared with theoretical predictions. The effects of the blend ratio and prevulcanization on the dynamic mechanical properties of the blends were investigated at different temperatures and frequencies. All the blends showed two distinct glass‐transition temperatures, indicating that the system is immiscible. It was also found that the glass‐transition temperatures of vulcanized blends are higher than those of unvulcanized blends. The time–temperature superposition and Cole–Cole analysis were made to understand the phase behavior of the blends. The tensile and tear fracture surfaces were examined by a scanning electron microscope to gain an insight into the failure mechanism. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 2189–2211, 2000  相似文献   

7.
The dynamic mechanical behaviour of high impact polystyrene (PS-HI), styrene/butadiene/styrene block copolymer (SBS) and PS-HI + SBS blends were investigated. Dynamic mechanical analysis (DMA) was performed in the temperature range −100°C to 100°C. The primary viscoelastic functions were determined. The copolymers PS-HI and SBS as well as PS-HI+SBS blends were investigated in creep-fatigue regime and relaxation at temperatures 25, 30, 35, 40 and 45°C. Dynamic mechanical behavior of PS-HI, SBS and PS-HI + SBS blends depends on the copolymer and blends composition, the hard phase content, time and temperature. With the decrement of the hard phase PS concentration, the loss tangent of the soft phase increases while the loss tangent of the hard phase and the storage modulus decrease. All samples have a single Tg of the hard phase and a single Tg of the soft phase. The glass transition temperatures decrease as the content of the PS phase decreases. At the constant load the creep values increase and those of creep modulus decrease over a period of time, for all examined samples. These effects are more pronounced in samples with lower content of hard phase and at higher temperatures. The time-temperature correspondence principle was applied to create master curves for the reference temperature 25°C for the creep modulus of PS-HI, SBS and PS-HI + SBS blends on a time scale far outside of the range measured by DMA experiments. These results enable us to predict the useful life of our copolymers and their blends in a wide range of time and temperature.  相似文献   

8.
The thermal behaviour of styrene butadiene rubber (SBR)/poly (ethylene-co-vinyl acetate) (EVA) blends was studied by using thermogravimetry (TG) and differential scanning calorimetry (DSC). The effects of blend ratio, cross-linking systems and compatibilization on the thermal stability and phase transition of the blends were analyzed. It was found that the mass loss of the blends at any temperature was lower than that of the components, highlighting the advantage of blending SBR and EVA. The addition of compatibilizer was also found to improve the thermal stability. DSC studies indicated the thermodynamic immiscibility of SBR/EVA system even in the presence of the compatibilizer. This is evident from the presence of two different glass transition temperatures, corresponding to SBR and EVA phases in both compatibilized and uncompatibilized blends.  相似文献   

9.
Block copolymers of polymethylphenylsilane (PMPS) and polystyrene (PS) have been successfully prepared by the condensation of α,ω-dichloro-polymethylphenylsilane with polystyryl-lithium. These new materials have been characterized by UV spectroscopy, 29Si-NMR, and size exclusion chromatography. These block copolymers show a good emulsifying activity to compatibilize blends of the two homopolymers (PMPS and PS). © 1993 John Wiley & Sons, Inc.  相似文献   

10.
An improved technique for casting highly oriented films of block copolymers from solutions subjected to flow is presented. Polymer solutions were rolled between two counter-rotating adjacent cylinders while at the same time the solvent was allowed to evaporate. As the solvent evaporated, the block copolymers microphase separated into globally oriented structures. Using this method known as ‘roll-casting’ we present in this paper a study of the morphology of polystyrene-polybutadiene-polystyrene (PS/PB/PS) triblock copolymer cast with and without additional high molecular weight homopolymers. The pure copolymer films consisted of polystyrene cylinders assembled on a hexagonal lattice in a polybutadiene matrix in a near single-crystal structure. Blends of copolymer with high molecular weight polystyrene and/or polybutadiene, phase separated into ellipsoidal regions of homopolymer embedded in an oriented block copolymer matrix. Annealing the films resulted in conversion of the homopolymer regions to spheres accompanied by some misalignment of the copolymer microdomains. The morphology of these films as revealed by TEM is discussed. A brief discussion of the flow field that develops in the experimental system is also presented and its similarity to the flow field of our previous work is shown. © 1994 John Wiley & Sons, Inc.  相似文献   

11.
Block copolymers (BCPs) are important precursors to produce membranes with well‐defined porosities. However, it remains challenging to prepare robust and affordable BCP‐based membranes. In this work, cheap commodity styrene‐butadiene‐styrene (SBS) elastic triblock copolymers are mixed with polystyrene‐block‐poly (2‐vinylpyridine) (SV) block copolymers in solutions, leading to macroscopically stable blend films upon casting because of the compatibilizer effect of PS existing in both copolymers. By soaking the blend films in ethanol, the microdomains of poly(2‐vinylpyridine) are selectively swollen and cavitated upon drying, resulting in a hierarchical structure with perforated SV phases interwoven with the SBS phases. The blend membranes with 30% SBS exhibit improved water permeability and mechanical robustness due to the presence of elastic SBS compared to neat SV membranes; meanwhile, the rejections of the blend membranes remain largely unchanged. Moreover, the blend membranes exhibit a pH‐responsive function, and homoporous SV regions are obtained by pre‐aligning the SV phases. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55, 1617–1625  相似文献   

12.
The compatibilizing effect of di‐, tri‐, penta‐, and heptablock (two types) copolymers with styrene and butadiene blocks was studied in polystyrene/polypropylene (PS/PP) 4/1 blends. The structure of PS/PP blends with the addition of 5 or 10 wt % of a block copolymer (BC) was determined on several scale levels by means of transmission electron microscopy (TEM) and small‐angle X‐ray scattering (SAXS). The results of the structure analysis were correlated with measured stress‐transfer properties: elongation at break, impact, and tensile strength. Despite the fact that the molar mass of the PS blocks in all the BCs used was about 10,000, that is, below the critical value M* (~18,000) necessary for the formation of entanglements of PS chains, all the BCs used were found to be good compatibilizers. According to TEM, a certain amount of a BC is localized at the interface in all the analyzed samples, and this results in a finer dispersion of the PP particles in the PS matrix, the effect being more pronounced with S‐B‐S triblock and S‐B‐S‐B‐S pentablock copolymers. The addition of these two BCs to the PS/PP blend also has the most pronounced effect on the improvement of mechanical properties of these blends. Hence, these two BCs can be assumed to be better compatibilizers for the PS/PP (4/1) blend than the S‐B diblock as well as both S‐B‐S‐B‐S‐B‐S and B‐S‐B‐S‐B‐S‐B heptablock copolymers. In both types of PS/PP/BC blends (5 or 10 wt % BC), the BC added was distributed between both the PS/PP interface and the PS phase, and, according to SAXS, it maintained a more or less ordered supermolecular structure of neat BCs. © 2001 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 39: 931–942, 2001  相似文献   

13.
In this study, ethylene/styrene interpolymer (ESI) was used as compatibilizer for the blends of polystyrene (PS) and low‐density polyethylene (LDPE). The mechanical properties including impact, tensile properties, and morphology of the blends were investigated by means of uniaxial tension, instrumented falling‐weight impact measurements, and scanning electron microscopy. Impact measurements indicated that the impact strength of the blends increases slowly with LDPE content up to 40 wt %; thereafter, it increases sharply with increasing LDPE content. The impact energy of the LDPE‐rich blends exceeded that of pure LDPE, implying that the LDPE polymer can be further toughened by the incorporation of brittle PS minor phase in the presence of ESI. Tensile tests showed that the yield strength of the PS/LDPE/ESI blends decreases considerably with increasing LDPE content. However, the elongation at break of the blends tended to increase significantly with increasing LDPE content. The compatibilization efficiency of ESI and polystyrene‐hydrogenated butadiene‐polystyrene triblock copolymers (SEBS) for PS/LDPE 50/50 was further compared. Mechanical properties show that ESI is more effective to achieve a combination of LDPE toughness and PS rigidity than SEBS. The correlation between the impact property and morphology of the ESI‐compatibilized PS/LDPE blends is discussed. The excellent tensile ductility of the LDPE‐rich blends resulted from shield yielding of the matrix. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 2136–2146, 2007  相似文献   

14.
The phase behaviour of symmetric (LN4) and asymmetric (LN3) triblock copolymers based on styrene-b-(styrene-co-butadiene)-b-styrene (S-SB-S) and their blends have been studied using transmission electron microscopy (TEM) and small-angle X-ray scattering (SAXS) and were correlated with rheological properties. A direct control over the final morphology and segregation strength for the block copolymer blends was achieved by blending of LN3 and LN4. The interaction parameter (χ) for LN4 is extracted by fitting the SAXS patterns at temperatures well above the ODT in consistency with Leibler mean-field structure-function for ABA triblock copolymers. A weak temperature dependency of χ has been observed which revealed that the phase behaviour in LN4 is mainly controlled by the entropic term. In the low frequency regime a non-terminal flow behaviour was observed in LN3 revealing the persistence of ordered structure within the experimental temperature range whereas a terminal flow behaviour with composition fluctuation was observed in LN4. G′ vs. G″ plots indicated a solid-like elastic melt behaviour for LN3 whereas presence of ODT over a broad temperature range was observed for LN4. ODT is observed to increase non-linearly with increase in LN3 content in the blends. ODT behaviour of the blends further reveals that the blends shift from weak-segregation to intermediate-segregation strength with the increase in LN3 content. The improvement in the state of ordering along with the change in morphology with the increase of LN3 content is attributed to co-surfactant effect between the PS end-blocks of LN3 and LN4 inside PS-rich phase.  相似文献   

15.
In our work, effects of 2‐mercapto‐1‐methylimidazole modified graphite nanoplatelet (MMI–GN) and carbon black (CB) on static and dynamic mechanical properties of styrene butadiene rubber (SBR) composites were studied. MMI–GN is synthesized by ball‐mill process, and the result reveals that π–π interactions existed between MMI and GN. The results demonstrate that the static and dynamic mechanical performances of SBR/CB/MMI–GN composites are significantly improved over these of SBR/CB and SBR/CB/GN composites. Compared with SBR/CB, the tensile strength, tear strength, and modulus at 300% elongation of SBR/CB/MMI–GN–3 are greatly improved by 45%, 27%, and 4%, respectively. And the rolling resistance of SBR/CB/MMI–GN–3 is reduced by 3.7% with remaining almost unchanged in the wet grip property. The superiority of MMI–GN in the enhancement for the overall performance of SBR/CB composites is attributed to the well dispersion of GN throughout the SBR matrix and the enhanced interfacial interactions between GN and the SBR matrix. This work might expedite synthesis of the graphite‐based materials for enhancing rubber composites, and enlarge the potential applications of modified graphite to fabricate the high‐performance rubber composites. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

16.
17.
The properties of styrene-butadiene-styrene (SBS) block copolymers do not only depend on the butadiene content and the degree of polymerisation but also on their chain architecture. In this contribution we present the results of a low-field time domain (TD) NMR study in which the transverse relaxation behaviour of different SBS block copolymers was analysed and correlated with findings from mechanical testing on pure and blended materials and transmission electron microscopy data which provide information on the microphase separation.The results indicate that while a straightforward determination of the butadiene content as in blended materials like ABS is not possible for these materials, the TD-NMR results correlate quite well with the mechanical performance of blends from SBS block copolymers with general purpose polystyrene (GPPS), i.e. industrial grade homopolymer polystyrene. Temperature-dependent experiments on pure and blended materials revealed a slight reduction in the softening temperature of the GPPS fraction in the blends.  相似文献   

18.
Nylon 6 (Ny6) and Bisphenol A polycarbonate (PC) are immiscible and form biphasic blends. To improve the compatibility of Ny6 and PC several ABA and AB Ny6/PC block copolymers were synthesized, and their compatibilizing behavior on the blends were tested. Block copolymers were prepared by reacting monoamino- or diamino-terminated Ny6 homopolymers with high molecular weight PC at 130°C in anhydrous DMSO. The reaction of diamino- and monoamino-terminated Ny6 with polycarbonate produces block copolymers of the type PC-Ny6-PC (ABA) and PC-Ny6 (AB), respectively, plus a certain amount of unconverted PC degradated to lower molecular weights. To separate the block copolymer from the unconverted PC, a selective fractionation with tetrahydrofuran (THF) and trifluoroethanol (TFE) was carried out. Three different fractions were obtained: THF-soluble fraction, TFE-soluble fraction, and the TFE-insoluble fraction. The scanning electron microscopy (SEM) analysis of a 75/25 (wt/wt) Ny6/PC blend added with 2% of ABA or AB block copolymers, showed the presence of smaller PC particles more adherent to the polyamide matrix, with respect to the same blend nonadded, which is clearly biphasic. The size of the PC particles decreases from ABA to AB compatibilized blends and the adhesion with the matrix is increases in the same way. © 1996 John Wiley & Sons, Inc.  相似文献   

19.
Homo- and copolymerizations of butadiene (BD) and styrene (St) with rare-earth metal catalysts, including the most active neodymium (Nd)-based catalysts, have been examined, and the cis-1,4 polymerization mechanism was investigated by the diad analysis of copolymers. Polymerization activity of BD was markedly affected not only by the ligands of the catalysts but also by the central rare-earth metals, whereas that of St was mainly affected by the ligands. In the series of Nd-based catalysts [Nd(OCOR)3:R = CF3, CCl3, CHCl2, CH2Cl, CH3], Nd(OCOCCl3)3 gave a maximum polymerization activity of BD, which decreased with increasing or decreasing the pKa value of the ligands. This tendency was different from that for Gd(OCOR)3 catalysts, where the CF3 derivative led to the highest polymerization activity of BD. For the polymerization of St and its copolymerization with BD, the maximum activities were attained at R = CCl3 for both Nd- and Gd-based catalysts. The copolymerization of BD and St with Nd(OCOCCl3)3 catalyst was also carried out at various monomer feed ratios, to evaluate the monomer reactivity ratios as rBD = 5.66 and rSt = 0.86. The cis-1,4 content in BD unit decreased with increasing St content in copolymers. From the diad analysis of copolymers, it was indicated that Nd(OCOCCl3)3 catalyst controls the cis-1,4 structure of the BD unit by a back-biting coordination of the penultimate BD unit. Furthermore, the long range coordination of polymer chain by the neodymium catalyst was suggested to assist the cis-1,4 polymerization. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 241–247, 1998  相似文献   

20.
The idea of repulsion in random copolymers was applied to the miscibility modification between polystyrene (PS) and polyarylate (PAr) segments of PS–PAr block copolymer (PAr–PS–PAr). Acrylonitrile (AN), which has a large positive interaction parameter against styrene, was used as a miscibility modifier toward PAr segments. AN was introduced into the carboxyl terminated telechelic‐PS at AN wt % ranging from 12 to 37 wt %. Based on these telechelic acrylonitrile–styrene random copolymers (SANx's where x represents AN wt %), SANx and PAr block copolymers (PAr–SANx–PAr's) were synthesized. The miscibility of SANx and PAr segments was estimated from the results of DSC with Fox's equation and spin–spin relaxation time measured by pulsed NMR. These results evidenced that the miscibility between PS and PAr segments can be modified by introducing AN into PS segments. The estimated volume fraction of the interfacial layer between SANx and PAr segments was increased as x was increased toward 24 wt %, around which the predicted miscibility reaches a maximum. Above that AN wt %, it began to decrease. The flexural strength increased as the miscibility between SANx and PAr segments increased. In particular, when x was between 20 and 30 wt %, PAr–SANx–PAr exhibited three times larger flexural strength than PAr–PS–PAr. The fracture behavior changed from brittle to ductile, even though the telechelic SANx by themselves exhibited almost the same fracture strength as the telechelic PS. The results of dynamic mechanical measurements and the percolation model suggested that around these AN wt % the continuum matrices in PAr–SANx–PAr changed from SANx phase to a cocontinuous phase of SANx and PAr. From these results, PAr–SANx–PAr was explained to perform such a high flexural strength by this phase change in the continuum matrices. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 127–137, 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号