首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The neutral technetium(V) phosphoraneimine complex [TcNCl2(Ph2PNH)2] is formed when (Bu4N)[TcOCl4] reacts with Me3SiNPPh3 in dichloromethane. Distances of 2.078(4) and 2.102(4) Å have been found between Tc and the neutral triphenylphosphoraneimine ligands. The Tc‐N‐P angles are 133.7(3) and 134.8(3)°. The terminal nitrido ligand is formed by decomposition of an additional molecule of Me3SiNPPh3. The protons which are used for the protonation of the organic ligands are released during the decomposition of CH2Cl2. The same reaction yields the [TcNCl4] anion when it is performed in acetonitrile.  相似文献   

3.
Rb{Pr6(C)2}I12 was obtained from a mixture of RbI, PrI3, Pr and C as black single crystals at elevated temperatures. The black crystals are triclinic, (no. 2), a = 960.1(2), b = 957.0(2), c = 1003.4(2) pm, α = 71.74(2), β = 70.69(2), γ = 72.38(2)°, V = 805.6(3) 106 pm3, Z = 1; R1 = 0.0868 for all 2749 measured independent reflections. Rb{Pr6(C)2}I12 contains {Pr6(C2)} clusters isolated from each other, surrounded by twelve edge‐bridging and six terminal ligands. The [{Pr6(C)2}Ii12Ia6]? units are connected via i‐a/a‐i bridges according to {Pr6C2}Ii6/1Ii‐a6/2Ia‐i6/2 with rubidium ions occupying twelve‐coordinate interstices.  相似文献   

4.
{[2‐FC6H4C(NSiMe3)2Li]4Li2O} — Formation of an Oxygen‐centred Cage From the reaction of [2‐FC6H4C(NSiMe3)2Li]2·OEt2 ( 1 ) with water containing toluene the oxygen‐centred cage {[2‐FC6H4C(NSiMe3)2Li]4Li2O} ( 2 ) was obtained. The formation of the cage structure, which contains a central Li6O‐unit, can be explained by using the laddering principle.  相似文献   

5.
6.
(2‐Pyridylmethyl)(tert‐butyldimethylsilyl)amine ( 1 ) can be lithiated once or twice yielding lithium (2‐pyridylmethyl)(tert‐butyldimethylsilyl)amide ( 2 ) and dilithium (2‐pyridylmethanidyl)(tert‐butyldimethylsilyl)amide ( 3 ), respectively. The oxidation of 3 with white phosphorus yields dilithium 1,2‐dipyridyl‐1,2‐bis(tert‐butyldimethylsilylamido)ethane ( 4 ) which crystallizes after partial hydrolysis as an adduct of the form 2 · 4 .  相似文献   

7.
The X‐ray structure of 2‐Chloro‐1, 3‐diisopropyl‐4, 5‐dimethylimidazolium dichlorophosphate ( 2 ) (obtained from 2‐chloro‐1, 3‐diisopropyl‐4, 5‐dimethylimidazolium chloride 1 and POCl3 in the presence of water) is reported.  相似文献   

8.
The phosphorus‐sulfur ligand 1‐(methylthio)‐3‐(diphenylphosphino)‐propane (S‐P3) has been synthesized and characterized by 1H NMR and 13C NMR. Reactions of S‐P3 with [PdCl2(PhCN)2] afforded the complexes [PdCl2(S‐P3)] ( I ) and [PdCl2(S‐P3)2] ( II ), in which S‐P3 acts as a bidentate and monodentate ligand, respectively. Compound I crystallizes in monoclinic space group P21/n (No. 14) with cell dimensions: a = 8.589(3), b = 15.051(3), c = 17.100(3)Å, β = 102.91(2)°, V = 2154.7(9)Å3, Z = 4. Likewise, compound II crystallizes in monoclinic space group P21/n (No. 14) with a = 9.993(5), b = 8.613(4), c = 18.721(5)Å, β = 90.18(3)°, V = 1611.3(12)Å3, Z = 2. Compound II has a trans square planar configuration with only the P‐site of the ligand bonded to the palladium atom.  相似文献   

9.
The potassium dihydrotriazinide K(LPh,tBu) ( 1 ) was obtained by a metal exchange route from [Li(LPh,tBu)(THF)3] and KOtBu (LPh,tBu = [N{C(Ph)=N}2C(tBu)Ph]). Reaction of 1 with 1 or 0.5 equivalents of SmI2(thf)2 yielded the monosubstituted SmII complex [Sm(LPh,tBu)I(THF)4] ( 2 ) or the disubstituted [Sm(LPh,tBu)2(THF)2] ( 3 ), respectively. Attempted synthesis of a heteroleptic SmII amido‐alkyl complex by the reaction of 2 with KCH2Ph produced compound 3 due to ligand redistribution. The YbII bis(dihydrotriazinide) [Yb(LPh,tBu)2(THF)2] ( 4 ) was isolated from the 1:1 reaction of YbI2(THF)2 and 1 . Molecular structures of the crystalline compounds 2 , 3· 2C6H6 and 4· PhMe were determined by X‐ray crystallography.  相似文献   

10.
The phosphane ligand [Ph2(Carb)P]+ forms neutral complexes {Ph2(Carb)P}MCl3 (Carb = 2,3-dihydro-1,3-diisopropyl-4,5-dimethylimidazol-2-ylidene; M = Pd, Pt) through the reaction of it's chloride salt with (PhCN)2MCl2; the triarylphosphane type properties of the ligand are revealed by n.m.r. and structural data.  相似文献   

11.
Preparation, Characterization, and Structure of Functionalized Fluorophosphaalkenes of the Type R3E–P=C(F)NEt2 (R/E = Me/Si, Me/Ge, CF3/Ge, Me/Sn) P‐functionalized 1‐diethylamino‐1‐fluoro‐2‐phosphaalkenes of the type R3E–P=C(F)NEt2 [R/E = Me/Si ( 2 ), Me/Ge ( 3 ), CF3/Ge ( 4 ), Me/Sn ( 5 )] are prepared by reaction of HP=C(F)NEt2 ( 1 , E/Z = 18/82) with R3EX (X = I, Cl) in the presence of triethylamine as base, exclusively as Z‐Isomers. 2–5 are thermolabile, so that only the more stable representatives 2 and 4 can be isolated in pure form and fully characterized. 3 and 5 decompose already at temperatures above –10 °C, but are clearly identified by 19F and 31P NMR‐measurements. The Z configuration is established on the basis of typical NMR data, an X‐ray diffraction analysis of 4 and ab initio calculations for E and Z configurations of the model compound Me3Si–P=C(F)NMe2. The relatively stable derivative 2 is used as an educt for reactions with pivaloyl‐, adamantoyl‐, and benzoylchloride, respectively, which by cleavage of the Si–P bond yield the push/pull phosphaalkenes RC(O)–P=C(F)NEt2 [R = tBu ( 6 ), Ad ( 7 ), Ph ( 8 )], in which π‐delocalization with the P=C double bond occurs both with the lone pair on nitrogen and with the carbonyl group.  相似文献   

12.
[Fe2sb‐CO)(CO)3(NO)(μ‐PtBu2)(μ‐Ph2PCH2PPh2)]: Synthesis, X‐ray Crystal Structure and Isomerization Na[Fe2(μ‐CO)(CO)6(μ‐PtBu2)] ( 1 ) reacts with [NO][BF4] at —60 °C in THF to the nitrosyl complex [Fe2(CO)6(NO)(μ‐PtBu2)] ( 2 ). The subsequent reaction of 2 with phosphanes (L) under mild conditions affords the complexes [Fe2(CO)5(NO)L(μ‐PtBu2)], L = PPh3, ( 3a ); η‐dppm (dppm = Ph2PCH2PPh2), ( 3b ). In this case the phosphane substitutes one carbonyl ligand at the iron tetracarbonyl fragment in 2 , which was confirmed by the X‐ray crystal structure analysis of 3a . In solution 3b loses one CO ligand very easily to give dppm as bridging ligand on the Fe‐Fe bond. The thus formed compound [Fe2(CO)4(NO)(μ‐PtBu2)(μ‐dppm)] ( 4 ) occurs in solution in different solvents and over a wide temperature range as a mixture of the two isomers [Fe2sb‐CO)(CO)3(NO)(μ‐PtBu2)(μ‐dppm)] ( 4a ) and [Fe2(CO)4(μ‐NO)(μ‐PtBu2)(μ‐dppm)] ( 4b ). 4a was unambiguously characterized by single‐crystal X‐ray structure analysis while 4b was confirmed both by NMR investigations in solution as well as by means of DFT calculations. Furthermore, the spontaneous reaction of [Fe2(CO)4(μ‐H)(μ‐PtBu2)(μ‐dppm)] ( 5 ) with NO at —60 °C in toluene yields a complicated mixture of products containing [Fe2(μ‐CO)(CO)4(μ‐H)(μ‐PtBu2)(μ‐dppm)] ( 6 ) as main product beside the isomers 4a and 4b occuring in very low yields.  相似文献   

13.
The tellurium(II) dithiolates Te[SCH2CH2C(O)OCH3]2, ( 1 ), Te[SCH2CH2CH2SC(O)CH3]2, ( 2 ), and Te[SCH2CH2CH2CH2SC(O)CH3]2, ( 3 ) were synthesized from Te(StBu)2 and the corresponding thiol. All compounds are sensitive toward higher temperatures and light and decompose to elemental tellurium and the disulfide. In the solid state, the Te atom of 1 exhibits the novel Te(S2Te2) coordination mode. Additionally to the two Te—S bonds, each Te atom forms two long Te···Te contacts to neighboring molecules, leading to a coordination number of four and a distorted sawhorse configuration. No intramolecular Te···O interactions are present in the solid state, in accordance with ab initio calculations (MP2/ecp‐basis) for the isolated molecule. 125Te NMR shifts of all compounds lay within a narrow range and close to the respective shift of other Te(SCH2R)2 compounds. VT 125Te NMR spectra gave no hint to donor acceptor interactions in solution for any of the compounds and thus corroborate results from IR‐spectroscopy, ab initio geometry optimizations, and thermochemical calculations.  相似文献   

14.
Ab Initio Calculation of the Tetracarbonatoscandate‐Ion in Na5[Sc(CO3)4] · 2 H2O. Single Crystal Structure Determination, Vibrational Spectra, and Thermal Decomposition Normal modes of the tetracarbonatoscandate‐ion, [Sc(CO3)4]5–, were determined by ab initio calculations and were compared with experimental data of Infrared‐ and Raman‐spectra of the compound Na5[Sc(CO3)4] · 2 H2O. A necessary redetermination of the structure with single crystal x‐ray diffraction data (tetragonal, P421c (Nr. 114), Z = 2, a = 746,37(4) pm, c = 1157,0(2) pm, VEZ = 644,5(1) 106 pm3) allows the discussion of existing hydrogen bonds. Determination of the thermal behaviour indicates a two‐stage decomposition reaction, but no corresponding intermediate could be isolated.  相似文献   

15.
Using phosphoryl chloride as a substrate, a family of 1,3,2‐bis(arylamino) phospholidine, 2‐oxide of the general formula ; (X=Cl, 6a ; X=NMe2, 1b ; X=N(CH2C6H5)(CH3), 2b ; X=NHC(O)C6H5, 3b ; X=4Me‐C6H4O, 4b ; X=C6H5O, 5b ; X=NHC6H11, 6b ; X=OC4H8N, 7b ; X=C5H10N, 8b ; X=NH2, 9b ; X=F, 10b and Ar=4Me‐C6H4) was prepared and characterized by 1H, 19F, 31P and 13C NMR and IR spectroscopy, and elemental analysis. A general and practical method for the synthesis of these compounds was selected. The structures of 6a and 2b were determined by single‐crystal X‐ray diffraction techniques. The low temperature NMR spectra of 2b revealed the restricted rotation of P‐N bond according to two independent molecules in crystalline lattice.  相似文献   

16.
The reaction of diphenylditelluride with pyridine, 2‐bromopyridine or 2‐bromopyridine/tetraamminedichlorocobalt(III) chloride in 12 M hydrochloric acid afforded the tetrachlorophenyltellurate(IV) compounds [C5NH6][PhTeCl4] ( 1 ), [2‐Br‐C5NH5] [PhTeCl4] ( 2 ), and [{2‐Br‐C5NH5}{Co(NH3)4Cl2}] [PhTeCl4]2 ( 3 ). They were all characterized structurally by single crystal X‐ray diffraction. In all structures, the arrangement about the tellurium atoms is square pyramidal. The [PhTeCl4] anions in 1 and 2 form trimeric and dimeric units, respectively, through Te···Cl secondary bonding. Compound 3 shows an unusual face‐to‐face packing of the [PhTeCl4]anions with hydrogen bonding to the bromopyridium cation.  相似文献   

17.
Some new phosphoramidates were synthesized and characterized by 1H, 13C, 31P NMR, IR spectroscopy and elemental analysis. The structures of CF3C(O)N(H)P(O)[N(CH3)(CH2C6H5)]2 ( 1 ) and 4‐NO2‐C6H4N(H)P(O)[4‐CH3‐NC5H9]2 ( 6 ) were confirmed by X‐ray single crystal determination. Compound 1 forms a centrosymmetric dimer and compound 6 forms a polymeric zigzag chain, both via ‐N‐H…O=P‐ intermolecular hydrogen bonds. Also, weak C‐H…F and C‐H…O hydrogen bonds were observed in compounds 1 and 6 , respectively. 13C NMR spectra were used for study of 2J(P,C) and 3J(P,C) coupling constants that were showed in the molecules containing N(C2H5)2 and N(C2H5)(CH2C6H5) moieties, 2J(P,C)>3J(P,C). A contrast result was obtained for the compounds involving a five‐membered ring aliphatic amine group, NC4H8. 2J(P,C) for N(C2H5)2 moiety and in NC4H8 are nearly the same, but 3J(P, C) values are larger than those in molecules with a pyrrolidinyl ring. This comparison was done for compounds with six and seven‐membered ring amine groups. In compounds with formula XP(O)[N(CH2R)(CH2C6H5)]2, 2J(P,CH2)benzylic>2J(P,CH2)aliphatic, in an agreement with our previous study.  相似文献   

18.
The dynamic behavior of the N,N,N′,N′‐tetramethylethylenediamine (tmeda) ligand has been studied in solid lithium‐fluorenide(tmeda) ( 3 ) and lithium‐benzo[b]fluorenide(tmeda) ( 4 ) using CP/MAS solid‐state 13C‐ and 15N‐NMR spectroscopy. It is shown that, in the ground state, the tmeda ligand is oriented parallel to the long molecular axis of the fluorenide and benzo[b]fluorenide systems. At low temperature (<250 K), the 13C‐NMR spectrum exhibits two MeN signals. A dynamic process, assigned to a 180° rotation of the five‐membered metallacycle (π‐flip), leads at elevated temperatures to coalescence of these signals. Line‐shape calculations yield ΔH?=42.7 kJ mol?1, ΔS?=?5.3 J mol?1 K?1, and =44.3 kJ mol?1 for 3 , and ΔH?=36.8 kJ mol?1, ΔS?=?17.7 J mol?1 K?1, and =42.1 kJ mol?1 for 4 , respectively. A second dynamic process, assigned to ring inversion of the tmeda ligand, was detected from the temperature dependence of T1ρ, the 13C spin‐lattice relaxation time in the rotating frame, and led to ΔH?=24.8 kJ mol?1, ΔS?=?49.2 J mol?1 K?1, and =39.5 kJ mol?1 for 3 , and ΔH?=18.2 kJ mol?1, ΔS?=?65.3 J mol?1 K?1, and =37.7 kJ mol?1 for 4 , respectively. For (D12)‐ 3 , the rotation of the CD3 groups has also been studied, and a barrier Ea of 14.1 kJ mol?1 was found.  相似文献   

19.
We report the synthesis of the diamagnetic double salt bis(tetra(n‐butyl)ammonium) phthalocyanato(2‐)lithate hexafluorophosphate (nBu4N)2[Lipc]PF6 [pc = phthalocyanine, nBu4N+ = tetra(n‐butyl)ammonium] in dme (dme = dimethoxyethane). According to single‐crystal X‐ray diffraction structure analysis [P$\bar{1}$ , a = 8.642(2) Å, b = 12.820(3) Å, c = 15.019(3) Å, α = 83.01(3)°, β = 87.87(3)°, γ = 74.45(3)°, Z = 1, R1 = 6.4 %], the phthalocyanine building bloc shows a substantial distortion of the macrocyclic ring from planarity. The deviation from D4h symmetry originates from packing effects induced by the two tetra(n‐butyl)ammonium cations located above and below the macrocycle. DFT structure optimization starting from the experimental non‐planar configuration produces a fully planar complex anion [Lipc].  相似文献   

20.
Sulfur‐substituted methylmercury compounds [Hg(CH2SR)2]( 1a, R = Me; 1b, R = Ph ) react with aluminium amalgam in refluxing toluene with transmetallation to give homoleptic tris(thiomethyl)aluminium complexes [Al(CH2SR)3]( 2a, R = Me; 2b, R = Ph ) (degree of conversion: >80%, isolated yields: 2a 63%, 2b 41%). Their identities were confirmed by NMR spectros‐copy (1H, 13C) and X‐ray crystal structure analyses. In crystals of compound 2a the aluminium atoms possess a trigonal‐bipyramidal arrangement with the coordination polyhedron defined by three carbon and two sulfur atoms. Two of the three CH2SMe ligands are bridging ligands (μ‐η2; 1kC:2kS), the third one is terminal bound (η1; kC). The structure is polymeric. Crystals are threaded by helical chains built up of six‐membered Al2C2S2 rings. Crystals of 2b are built up of centrosymmetrical dimers with six‐membered Al2C2S2 rings having bridging CH2SPh ligands (μ‐η2; 1kC:2kS). On each Al atom two terminal (η1; kC)CH2SPh ligands are bound. They exhibit quite different Al‐C‐S angles (116.7(4) and 106.5(3)?). Similar values (114.32115.7? and 109.52109.9?) were found in ab initio calculations of model compounds [{Al(CH2SR)3}2]( 3a, R=H; 3b, R=Me; 3c, R=CH=CH2 ). A conformational energy diagram for rotation of one of the terminal CH2SH ligand in the parent compound 3a around the Al‐C bond is discussed in terms of repulsive interactions of lone electron pairs of sulfur atoms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号