首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Chalcogenoniobates as Reagents for the Synthesis of New Heterobimetallic Niobium Coinage Metal Chalcogenide Clusters In the presence of phosphine chalcogenoniobates such as Li3[NbS4] · 4 CH3CN ( I ), (NEt4)4[Nb6S17] · 3 CH3CN ( II ) and (NEt4)2[NbE′3(EtBu)] ( III a : E′ = E = S; III b : E = Se, E′ = S; III c : E = E′ = Se) respectively react with copper and gold salts to give a number of new heterobimetallic niobium copper(gold) chalcogenide clusters. These clusters show metal chalcogenide units already known from the complex chemistry of the tetrachalcogenometalates [ME4]n (M = V, n = 3, E = S; M = Mo, W, n = 2, E = S, Se). The compounds 1 – 8 owe a central tetrahedral [NbE4] structural unit, which coordinates η2 from two to five coinage metal atoms, employing the chalcogenide atoms of the [NbE4] edges. The compounds 9 – 11 have a [M′2Nb2E4] (M′ = Cu, Au) heterocubane unit in common, involving a metal metal bond between the niobium atoms, while the compounds 12 and 13 show a complete and 14 an incomplete [M′3NbE3X] heterocubane structure (X = Cl, Br). 15 consists of a Cu6Nb2 cube with the six planes capped by μ4 bridging selenide ligands forming an octahedra. The compounds 1 – 15 are listed below: (NEt4) [Cu2NbSe2S2(dppe)2] · 2 DMF ( 1 ), [Cu3NbS4(PPh3)4] ( 2 ), [Au3NbSe4(PPh3)4] · Et2O ( 3 ), [Cu4NbS4Cl(PCy3)4] ( 4 ), [Cu4NbS4Cl(PtBu3)4] · 0,5 DMF ( 5 ), [Cu4NbSe4(NCS)(PtBu3)4] · DMF ( 6 ), [Cu4NbS4(NCS)(dppm)4] · Et2O ( 7 ), [Cu5NbSe4Cl2‐ (dppm)4] · 3 DMF ( 8 ), [Cu2Nb2S4Cl2(PMe3)6] · DMF ( 9 ), [Au2Nb2Se4Cl2(PMe3)6] · DMF ( 10 ), (NEt4)2[Cu3Nb2S4(NCS)5(dppm)2(dmf)] · 4 DMF ( 11 ), [Cu3NbS3Br(PPh3)3(dmf)3]Br · [CuBr(PPh3)3] · PPh3 · OPPh3 · 3 DMF ( 12 ), [Cu3NbS3Cl2(PPh3)3(dmf)2] · 1.5 DMF ( 13 ), (NEt4)[Cu3NbSe3Cl3(dmf)3] ( 14 ), [Cu6Nb2Se6O2(PMe3)6] ( 15 ). The structures of these compounds were obtained by X‐ray single crystal structure analysis.  相似文献   

2.
Syntheses and Crystal Structures of Novel Chalcogenido‐bridged Niobium Copper Clusters In the presence of tertiary phosphines, the reaction of NbCl5 and Copper(I) salts with Se(SiMe3)2 (E = S, Se) affords the new chalcogenido‐bridged niobium‐copper cluster compounds ( 1 ) and [NbCu4Se4Cl (PPh3)4] ( 2 ). Using E(R)SiMe3 (E = S, Se, R = Ph, nPr) instead of the bisilylated selenium species leads to the compounds [NbCu2(SPh)6(PMe3)2] ( 3 ), [NbCu2(SPh)6(PnPr3)2] ( 4 ), [NbCu2(SePh)6(PMe3)2] ( 5 ), [NbCu2(SePh)6(PnPr3)2] ( 6 ), [NbCu2(SePh)6(PiPr3)2] ( 7 ), [NbCu2(SePh)6(PtBu3)2] ( 8 ), [NbCu2(SePh)6(PiPr2Me)2] ( 9 ), [NbCu2(SePh)6(PPhEt2)2] ( 10 ), [Nb2Cu2(SnPr)8(PnPr3)2Cl2] ( 11 ) and [Nb2Cu6(SnPr)12(PiPr3)2Cl4]·2 CH3CN ( 12 ·2 CH3CN). By reacting CuI salts and NbCl5 with the monosilylated selenides Se(tBu)SiMe3 and Se(iPr)SiMe3 which have a weak Se–C bond the products [Nb2Cu6Se6(PiPr3)6Cl4] ( 13 ), [Nb2Cu4Se2(SeiPr)6(PnPr3)4Cl2] ( 14 ) and [Nb2Cu6Se2(SeiPr)10(PEt2Me)2Cl2]·DME ( 15 ) are formed which contain selenide as well as alkylselenolate ligands. The molecular structures of all of these new compounds were determined by single crystal X‐ray diffraction measurements.  相似文献   

3.
Syntheses and Crystal Structures of Copper and Silver Complexes containing Dithiophosphinato and Trithiophosphonato Ligands The reactions of CuI and AgI salts with diphenyldithiophosphinic acid trimethylsilylester in the presence of tertiary phosphines yield the complexes [Cu(μ‐S)SPPh2(PR3)]2 (R = Me 1a , iPr 1b ), [Ag(μ‐S)SPPh2(PnPr3)]2 ( 2 ), [Ag(S2PPh2)(PEt3)]2 ( 3 ), and [Cu8(μ8‐S)(S2PPh2)6] ( 4 ). The cage complex [(PhPS3)2Cu4(PMe3)5] ( 5 ) is obtained by the reaction of phenyltrithiophosphonic acid trimethylester. All compounds were structurally characterised by X‐ray crystallography.  相似文献   

4.
Syntheses and Crystal Structures of New Sulfido‐bridged Ruthenium Clusters The reaction of S(SiMe3)2 or NaSH with [RuCl2(PPh3)3] or [Ru3Cl8(PEt3)4] leads to the formation of sulfidobridged ruthenium clusters. In this publication the compounds [Ru6S8(PPh3)6][PF6] ( 1 ), [Ru6S8(PPh3)6][RuCl4(PPh3)2] ( 2 ), [Ru6S8(PEt3)6] ( 3 ) and [Ru3S4Cl2(PPh3)3]2 ( 4 ) are described. The structures of these compounds were elucidated by single crystal X‐ray structural analyses.  相似文献   

5.
Syntheses and Crystal Structures of Cu and Ag Complexes with [Ta6S17]4— Ions as Ligands In the presence of phosphines saturated solutions of the thiotantalates (NEt4)4[(Ta6S17)] · 3MeCN react with copper or silver salts to give new heterobimetallic Ta—M—S clusters (M = Ag, Cu). These clusters contain the intact cluster core of the [Ta6S17]4— anion. Compounds [Cu(PMe3)4]3[(Ta6S17)Cu(PMe3)] · 2MeCN ( 1 ), (NEt4)[(Ta6S17)Ag3(PMe2iPr)6] · 5MeCN ( 2 ), [(Ta6S17)Cu4 (PMe2iPr)8] · MeCN ( 3 ), [(Ta6S17)Cu5Cl(PMe2iPr)9] · MeCN ( 4 ) and [Ta2Cu2S4Cl2(PMe2iPr)6] · 2MeCN ( 5 ) are presented herein. The structures of these compounds were elucidated by single crystal X‐ray structural analyses.  相似文献   

6.
Syntheses and Crystal Structures of New Selenido-bridged Ruthenium Clusters The reaction of Se(SiMe3)2 with [RuCl2(PPh3)3], or a mixture of [RuCl2(PPh3)3] and alkylphosphines leads to the formation of selenido-bridged ruthenium clusters. In this publication the compounds [Ru6Se8(PPh3)6] ( 1 ), [Ru6Se8(PEt3)6] ( 2 ) und[Ru6Se8(PnPr3)6] ( 3 ) are described.The compounds 1-3 contain Ru616+ cluster cores with Ru2+ and Ru3+ centers. The structures of these compounds were elucidated by single crystal X-ray structural analyses.  相似文献   

7.
Synthesis and Crystal Structures of New Phosphorus‐bridged Bimetallic Clusters of the Elements Mercury and Iron The reaction of [Fe(CO)4(HgX)2] (X = Cl, Br) with P(SiMe3)2tBu in the presence of tertiary phosphines and phosphinium salts leads to the ionic compounds [PPh4]2[Hg12{Fe(CO)4}8(PtBu)4X2] (X = Cl, Br) ( 1 , 2 ). If [Fe(CO)4(HgX)2] reacts with P(SiMe3)2tBu the polymeric polynuclear complex [Hg15{Fe(CO)4}3(PtBu)8Br8]n ( 3 ) as well as the twenty mercury‐ and eight iron‐atoms containing [Hg20{Fe(CO)4}8(PtBu)10X4]‐clusters (X = Br, Cl) ( 4 , 5 ) are formed. The reaction of [Fe(CO)4(HgX)2] with LiPPh2 yields to the phosphanido‐bridged [Hg4{Fe(CO)4}2(PPh2)2Cl2] ( 6 ), where as the use of LiP(SiMe3)Ph leads to the diphosphinidene‐bridged cluster [Li(thf)4]2[Hg10{Fe(CO)4}6(P2Ph2)2Br6] ( 7 ). The structures of the compounds 1–7 were characterized by X‐ray single crystal structure analysis.  相似文献   

8.
New Coppertelluride Clusters – Syntheses, Crystal Structures, and Optical Spectra Reactions of copper(I) acetate with Te(SiMe3)2 lead in the presence of tertiary phophines PR3 (R = organic group) to the formation of new coppertelluride clusters: [Cu8Te4(PPh3)7] ( 1 ), [Cu16Te9(PPh3)8] ( 2 ), [Cu23Te13(PPh3)10] ( 3 ), [Cu44Te23(PPh3)15] ( 4 ), [Cu12Te6(PPh3)8] ( 5 ), [Cu26Te12(PEt2Ph)12] ( 6 ), [Cu16Te8(PnPr2Ph)10] ( 7 ), [Cu44Te23(PnPr2Ph)15] ( 8 ), [Cu24Te12(PiPr3)12] ( 9 ). Simple electron counting on the basis of Cu1+ and Te2– suggests that the smaller and medium size clusters 1 , 5 , 7 , and 9 are electron precise compounds and that on the other hand some of the medium size and larger ones 2 , 3 , 4 , and 8 must contain mixtures of Cu1+/Cu2+ ions or 6 Cu1+ ions and Cu0 atoms. UV‐VIS spectra in the solid state strongly confirms this suggestion by showing broad intervalence bands in the region of higher wavelengths for the cluster compounds formally being not electron precise. Apparently there is also an interesting dependence of these intervalence bands on the size of the cluster molecules.  相似文献   

9.
Hydrothermal Synthesis and Crystal Structure of the Coinage Metal Mercury Chalcogenide Halides CuHgSeBr, AgHgSBr, and AgHgSI The hydrothermal reaction of CuBr and HgSe in concentrated aqueous HBr as solvent at 285 °C yields red crystals of CuHgSeBr, the hydrothermal reaction of AgX (X = Br, I) and HgS in half‐concentrated aqueous HX (X = Br, I) as solvent at 300/400 °C yields yellow crystals of AgHgSBr and AgHgSI. The compounds crystallize isotypically (orthorhombic, Pmma, a = 1020.1(3) pm, b = 431.2(1) pm, c = 925.6(3) pm for CuHgSeBr, a = 964.8(8) pm, b = 466.1(4) pm, c = 942.6(6) pm for AgHgSBr und a = 1015.9(2) pm, b = 464.77(5) pm, c = 984.9(2) pm for AgHgSI, Z = 4). The structures consist of plane folded Hg–Y chains connected by pairs of distorted Y2X2 terahedra sharing the X–X‐edge (M = Cu, Ag; X = Br, I; Y = S, Se). Atoms of the monovalent metals M have a strongly distorted tetrahedral coordination of two halogen and two chalcogen atoms. The new structure type shows distinct differences in the arrangement of the Hg–Y chains in comparision to the already known CuHgSeCl, but represents the superposition structure of the order‐disorder phase γ‐Hg3S2Cl2.  相似文献   

10.
Polynuclear Iron/Tantalum and Tantalum Complexes with Asn Ligands Starting with [Cp@Ta(CO)4] ( 1 ) (Cp@ = C5H3tBu2‐1,3) and As4 or (tBuAs)4 ( 2 ) its thermolysis at 190 °C in decalin gives [{Cp@Ta}2(μ‐η4 : η4‐As8)] ( 3 ), which is also formed according to equation (2) in addition to [{Cp@Ta}3As6] ( 5 ). The reaction of 1 or [{Cp*(OC)2Fe}2] ( 6 ) with 3 affords 5 or [{Cp*Fe}{Cp@Ta}As5] ( 8 ) demonstrating the use of 3 as Asn source. 8 can also be synthesized from 1 and [Cp*Fe(η5‐As5)] ( 7 ) for which the cothermolysis of 2 and 6 gives a better yield.  相似文献   

11.
Crystal Structures of 1,3‐Diketone and Enaminoketone Derivatives Containing Ferrocene The crystal structures of the 1,3‐diketones 2,4‐dioxo‐4‐ferrocenyl‐butanoic acid ethylester ( 1 ) und ferrocene‐1,1′‐bis(2,4‐dioxo‐butanoic acid ethylester) ( 2 ) have been determined. Through conversion of 1 by Cu(ac)2 · H2O in THF the copper(II) complex aqua‐bis(3‐ethoxycarbonyl‐1‐ferrocenyl‐propane‐1,3‐dionato) copper(II) ( 1 a ) has been obtained, which is structurally characterized too. The structures of the enaminoketones 2,2′‐(1,4‐phenylenediamino)‐bis(4‐ferrocenyl‐4‐oxo‐but‐2‐enoic acid ethylester) ( 3 ) and ferrocene‐1,1′‐bis(4‐oxo‐2‐phenylamino‐but‐2‐enoic acid ethylester) ( 4 ) have been determined by X‐ray analysis as well. Electrochemical studies completed the structural investigations.  相似文献   

12.
On Coinage Metal Mercury Chalcogenide Halides II: Hydrothermal Synthesis, Crystal Structure, and Solid State Phase Transition of CuHgSCl and CuHgSBr The hydrothermal reaction of CuCl and CuBr with HgS in concentrated aqueous HX (X = Cl, Br) as solvent at 670 K in sealed glass ampoules yields yellow‐orange crystals of CuHgSCl and CuHgSBr. Both compounds crystallize isotypically (orthorhombic, Pbam, a = 984.01(8), b = 1775.1(2), c = 409.59(3) pm for CuHgSCl and a = 1003.7(4), b = 1833.6(5), c = 412.4(2) pm for CuHgSBr, Z = 8). The structures consist of plane folded HgS chains connected by pairs of distorted CuS2X2 tetrahedra sharing the X—X‐edge (X = Cl, Br) in which the copper atoms occupy off‐centered positions. The large displacement factors of the Cu atoms represent thermal vibrations as shown by additional X‐ray investigations at different temperatures. The single‐crystal structure determination shows that the earlier structure model, based on powder diffraction data, is incorrect. The structure type of CuHgSCl und CuHgSBr shows distinct similarities to the structure type of the already known compounds CuHgSeBr, AgHgSBr and AgHgSI (MHgYX). At 323 K CuHgSBr undergoes a second order phase transition into a higher symmetric structure of the MHgYX type (orthorhombic, Pmam, a = 1009.2(3), b = 918.40(4), c = 413.81(2) pm) with halved b‐axis.  相似文献   

13.
14.
An Unusual Ambivalent Tin(II)‐oxo Cluster The reaction of the copper aryl CuDmp (Dmp = 2, 6‐Mes2C6H3; Mes = 2, 4, 6‐Me3C6H2) with the stannanediyl Sn{1, 2‐(tBuCH2N)2C6H4} followed by hydrolysis affords in the presence of lithium‐tert‐butoxide the tin(II)‐oxo cluster {(Et2O)(LiOtBu)(SnO)(CuDmp)}2 ( 5 ) in small yield. The solid state structure of the colorless compound shows a central Li2Sn2O2(OtBu)2 fragment with heterocubane structure. In addition, the Li‐acceptor and O(Sn)‐donor atoms are used for the coordination of one molecule diethylether and copper aryl CuDmp, respectively.  相似文献   

15.
On Coinage Metal Mercury Chalcogenide Halides. V. Solvothermal Synthesis and Crystal Structure of the High Temperature Modification of AgHgSI The solvothermal reaction of AgI and α‐HgS in diluted HI as solvent yields yellow crystals of α‐AgHgSI. The compound crystallizes in space group type P212121 with a = 707.47(1), b = 773.18(2), c = 847.53(2) pm and Z = 4. The structure consists of a distorted hexagonal close packed array of sulphur and iodine, in which one fourth of the tetrahedral voids is occupied by silver and a half of the octahedral voids is occupied by mercury. The distortion of the hexagonal structure is caused by the steric demand of the lone pairs of sulphur and iodine. This could be shown by the calculation of the electron localisation function (ELF). The here described modification of AgHgSI can be obtained at 273 °C from the earlier published β‐AgHgSI and is therefore called α‐AgHgSI.  相似文献   

16.
Halogeno Metallates of Transition Elements with Cations of Nitrogen‐containing Heterocyclic Bases. VIII Syntheses and Crystal Structures of Novel Bromoferrates(III), Chloro‐, and Aquachloroferrates(III) with Tetrahedral and Octahedral Iron Coordination, among them two Neutral Complexes of Iron(II) and (III) (dmpipzH2)[FeIIIBr4]2 ( 1 ), (trienH2)[FeIIIBr4]Br ( 2 ), (dmpipzH2)[FeIIICl4]Cl ( 3 ), (dmpipzH2)2[FeIII(H2O)2Cl4][FeIIICl4]Cl2 ( 4 ), and (trienH2)[FeIII(H2O)3Cl3]Cl2 ( 5 ) crystallize from aqueous mineralic acid solutions of iron(II) halide and the organic bases (1,4‐dimethylpiperazine or triethylenediammine) in the presence of atmospheric oxygen whereas (dmpipzH2)[FeCl4(H2O)6]Cl2 ( 6 ) was obtained under the exclusion of air. 1 , 2 , and 3 contain the known tetrahedral halogeno complexes, 4 contains a novel octahedral iron(III) complex, and in 6 a neutral binuclear iron(II) complex has been found which has not been described before. The crystal structures and the hydrogen bridging systems of the complexes are described.  相似文献   

17.
Syntheses and Crystal Structures of Dialkylgallium Hydrides — Dimeric versus Trimeric Formula Units Dialkylgallium hydrides (R = Me, Et, iPr, iBu, neopentyl) were obtained on two different synthetic routes. The dimethyl and diethyl compounds were formed by the reaction of LiH with the corresponding dialkylgallium chlorides via lithium dialkyldihydridogallate intermediates, which so far have not been isolated in a pure form. On the second route, trialkylgallium compounds were treated with [GaH3·NMe2Et] to yield the dialkylgallium hydrides by a substituent exchange reaction. The dimethyl, diethyl and diisopropyl compounds are trimeric in solution. That trimeric structure was verified for the diisopropyl derivative by a crystal structure determination. Di(neopentyl)gallium hydride has a dimeric structure in solution and in the solid state.  相似文献   

18.
On Coinage Metal Mercury Chalcogenide Halides. IV Hydrothermal Synthesis and Crystal Structure of CuHgSI and CuHg2S2I The hydrothermal reaction of CuI with α‐HgS in diluted aqueous HI‐solution as solvent at 180 °C yields dark red crystals of CuHgSI. The compound crystallizes orthorhombic in the space group Pna21 with a = 718.3(1) pm, b = 834.3(2) pm and c = 698.9(1) pm and Z = 4. CuHg2S2I was obtained by the hydrothermal reaction of CuI with α‐HgS in diluted HI‐solution at 300 °C as black crystals. The compound crystallizes orthorhombic in the space group Cmc21 with a = 1261.8(3) pm, b = 722.4(1) pm and c = 693.7(1) pm and Z = 4. Both crystal structures could be explained as distorted version of the Wurtzite structure type in which two different types of anion‐lattices are built up.  相似文献   

19.
20.
Three novel chiral Schiff Base ligands (H2L) were prepared from the condensation reaction of 3‐formyl acetylacetone with the amino acids L ‐alanine, L ‐phenylalanine, and L ‐threonine. X‐ray single crystal analyses revealed that the Schiff Base compounds exist as enamine tautomers in the solid state. The molecular structure of the compounds is stabilized by an intramolecular hydrogen bridge between the enamine NH function and a carbonyl oxygen atom of the pentandione residue. Treatment of the ligands H2L with copper(II) actetate in the presence of pyridine led to the formation of copper complexes [CuL(py)]. In each of the complexes the copper atoms adopt a distorted square‐pyramidal coordination. Three of the basal coordination sites are occupied by the doubly deprotonated Schiff Bases L2– which act as tridentate chelating O, N, O‐ligands. The remaining coordination sites are occupied by a pyridine ligand at the base and a carboxyl oxygen atom of a neighboring complex at the apical position. The latter coordination is responsible for a catenation of the complexes in the solid state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号