首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Synthesis and Properties of [Ph2(Carb)P]AlCl4 (Carb = 2,3‐Dihydro‐1,3‐diisopropyl‐4,5‐dimethylimidazol‐2‐ylidene) – a Stable Carbene Complex of Trivalent Phosphorus [1] 2,3‐Dihydro‐1,3‐diisopropyl‐4,5‐dimethylimidazol‐2‐ylidene ( 7 , Carb) reacts with chlorodiphenylphosphane to give the cationic phosphane [Ph2(Carb)P]Cl ( 10 ) which is transferred to the more stable salt [Ph2(Carb)]AlCl4 ( 13 ) on treatment with AlCl3. The cationic phosphane selenide [Ph2(Carb)PSe]AlCl4 ( 14 ) is obtained from 13 and selenium. Spectroscopic and structural data indicate [Ph2(Carb)P]+ to be a cationic analogue of Ph3P. The X‐ray structure of 13 is reported.  相似文献   

2.
2, 3‐Dihydro‐1, 3‐diisopropyl‐4, 5‐dimethylimidazol‐2‐ylidene ( 1 , Carb) reacts with tin tetrafluoride to give the complex (Carb)2SnF4 ( 3 ). The ligand properties of 1 are discussed in terms of the crystal structure and NMR data of 3 .  相似文献   

3.
The phosphenic chloride adduct Im—PO2Cl ( 4 , Im = 2, 3‐dihydro‐1, 3‐diisopropyl‐4, 5‐dimethylimidazol‐2‐ylidene) was prepared by partial hydrolysis of [Im—POCl2]Cl ( 5 ) and characterized by X‐ray structure analysis.  相似文献   

4.
2,3‐Dihydro‐1,3‐diisopropyl‐4,5‐dimethylimidazol‐2‐ylidene 1 (Carb, R1 = iPr, R2 = Me) reacts with TeI4 to give the carbene adduct CarbTeI2 ( 3 ). The crystal structure of 3 consists of T‐shaped monomeric fragments linked by weak Te. I interactions to form infinite helical chains. © 2005 Wiley Periodicals, Inc. Heteroatom Chem 16:316–319, 2005; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/hc.20090  相似文献   

5.
On the Hydrolysis of 2,3‐Dihydro‐1,3‐di‐tert‐butyl‐4,5‐dimethylimidazol‐2‐ylidene. The Crystal Structure of 1,3‐Di‐tert‐butyl‐4,5‐dimethylimidazolium Bicarbonate 1,3‐Di‐tert‐butyl‐4,5‐dimethylimidazolium bicarbonate ( 7 ), formed on the exposure of 2,3‐dihydro‐1,3‐di‐tert‐butyl‐4,5‐dimethylimidazol‐2‐ylidene ( 6 ) towards air, is prepared on the reaction of 6 with ammonium bicarbonate; its crystal structure analysis reveals the presence of dimeric bicarbonate anions linked to each other and to the imidazolium ions with hydrogen bonds.  相似文献   

6.
The imidazolium nitrates [ImH](NO3) ( 1 ) and [ImBr](NO3) ( 2 ) are obtained from the corresponding bromides [ImH]Br ( 3 ) and [ImBr]Br ( 4 ) and AgNO3 in excellent yields (Im = 2, 3‐dihydro‐1, 3‐diisopropyl‐4, 5‐dimethylimidazol‐2‐ylidene). The crystal structures of 1 and 2 consist of infinite linear chains of ions linked by H···O and Br···O contacts. In addition, stacks consisting of imidazolium and nitrate ions in the sequence ImBr/NO3/ImBr/NO3··· with parallel orientation of their plains are detected in 2 . The crystal structure of 3 is also reported.  相似文献   

7.
The crystal structures of three quinuclidine‐based compounds, namely (1‐azabicyclo[2.2.2]octan‐3‐ylidene)hydrazine monohydrate, C7H13N3·H2O ( 1 ), 1,2‐bis(1‐azabicyclo[2.2.2]octan‐3‐ylidene)hydrazine, C14H22N4 ( 2 ), and 1,2‐bis(1‐azoniabicyclo[2.2.2]octan‐3‐ylidene)hydrazine dichloride, C14H24N42+·2Cl? ( 3 ), are reported. In the crystal structure of 1 , the quinuclidine‐substituted hydrazine and water molecules are linked through N—H…O and O—H…N hydrogen bonds, forming a two‐dimensional array. The compound crystallizes in the centrosymmetric space group P21/c. Compound 2 was refined in the space group Pccn and exhibits no hydrogen bonding. However, its hydrochloride form 3 crystallizes in the noncentrosymmetric space group Pc. It shows a three‐dimensional network structure via intermolecular hydrogen bonding (N—H…C and N/C—H…Cl). Compound 3 , with its acentric structure, shows strong second harmonic activity.  相似文献   

8.
The new N‐heterocyclic carbene (NHC) precursors 4, ‐dicyano‐1, ‐dimesityl‐ ( 9 ) and 4, 5‐dicyano‐1, 3‐dineopentyl‐2‐(pentafluorophenyl)imidazoline ( 14 ) were synthesized. The structure of 9 could be determined by X‐ray crystallography. With the 2‐pentafluorophenyl‐substituted imidazolines 9 and 14 , the [AgCl(NHC)], [RhCl(COD)(NHC)], and [RhCl(CO)2(NHC)] complexes [NHC = 4, 5‐dicyano‐1, 3‐dimesitylimidazol‐2‐ylidene ( 3 ) and 4, 5‐dicyano‐1, 3‐dineopentylimidazol‐2‐ylidene ( 4 )] were obtained. Crystal structures of [AgCl( 3 )] ( 15 ), [RhCl(COD)( 3 )] ( 17 ), [RhCl(COD)( 4 )] ( 18 ), and [RhCl(CO)2( 3 )] ( 19 ) were solved and with the crystal data of 19 , the percent buried volume ( %Vbur) of 31.8(±0.1) % was determined for NHC 3 . Infrared spectra of the imidazolines 9 and 14 and of the complexes 15 – 20 were recorded and the CO stretching frequencies of complexes 19 and 20 were used to determine the Tolman electronic parameters of the newly obtained NHCs 3 (TEP: 2060 cm–1) and 4 (TEP: 2061 cm–1), thus proving that 1, 3‐substitution of maleonitrile‐NHCs does not have a significant effect for the high π‐acceptor strength of these carbenes.  相似文献   

9.
The title compounds, namely (2Z)‐1‐(4‐bromophenyl)‐2‐(pyrrolidin‐2‐ylidene)ethanone, C12H12BrNO, (I), (2Z)‐1‐(4‐bromophenyl)‐2‐(piperidin‐2‐ylidene)ethanone, C13H14BrNO, (II), and (2Z)‐2‐(azepan‐2‐ylidene)‐1‐(4‐bromophenyl)ethanone, C14H16BrNO, (III), are characterized by bifurcated intra‐ and intermolecular hydrogen bonding between the secondary amine and carbonyl groups. The former establishes a six‐membered hydrogen‐bonded ring, while the latter leads to the formation of centrosymmetric dimers. Weak C—H...Br interactions link the individual molecules into chains that run along the [011], [101] and [101] directions in (I)–(III), respectively. Additional weak Br...O, C—H...π and C—H...O interactions further stabilize the crystal structures.  相似文献   

10.
[Ph2P(O)CH2Im][F3B(μ‐OH)BF3]. First Structural Characterization of the Hexafluoro(μ‐hydroxo)diborate Ion [1] The hexafluoro(μ‐hydroxo)diborate ion has been isolated as it's Ph2P(O)CH2Im salt [Im = 2‐(1, 3, 4, 5‐tetramethylimidazolio)] ( 2 ) through basic hydrolysis of [Ph2P(OBF3)CH2Im]BF4 ( 1 ). The crystal structure of 2 · CH2Cl2 reveals the presence of ion pairs linked by unsymmetrical O‐H‐O hydrogen bonds.  相似文献   

11.
On Rearrangements by Cyclialkylations of Arylpentanols to 2,3‐Dihydro‐1 H ‐indene Derivatives. Part 4. The Acid‐Catalyzed Cyclialkylation of 2,4‐Dimethyl‐2‐phenyl[3‐ 13 C]pentan‐3‐ol The cyclialkylation of 2,4‐dimethyl‐2‐phenyl[3‐13C]pentan‐3‐ol ( 4 ) gives only 2,3‐dihydro‐1,1,2,3‐tetramethyl‐1H‐[3‐13C]indene ( 6 ) (cf. Scheme 2) and not a trace of the isotopomeric 2,3‐dihydro‐1,1,2,3‐tetramethyl‐1H‐[2‐13C]indene ( 5 ). The mechanism proposed in [3] for the cyclialkylation of 4 (cf. Scheme 2, Path A) has, therefore, to be abandoned. The mechanism of Scheme 2, Path B, is proposed and may be considered as definitively established.  相似文献   

12.
By alternating‐current electrochemical technique crystals of copper(I) π‐complex with 1‐allylpyridinium chloride of [C5H5N(C3H5)][Cu2Cl3] ( 1 ) composition have been obtained and structurally investigated. Compound 1 crystallizes in monoclinic system, space group C2/c a = 24.035(1) Å, b = 11.4870(9) Å, c = 7.8170(5) Å, β = 95.010(5)°, V = 2150.0(2) Å3 (at 100 K), Z = 8, R = 0.028, for 4836 independent reflections. In the structure 1 trigonal‐pyramidal environment of π‐coordinated copper(I) atom is formed by a lengthened to 1.376(2) Å C=C bond of allyl group and by three chlorine atoms. Other two copper atoms are tetrahedrally surrounded by chlorine atoms only. The coordination polyhedra are combined into an original infinite (Cu4Cl62—)n fragment. Structural comparison of 1 and the recently studied copper(I) chloride π‐complexes with 3‐amino‐, 2‐amino‐, 4‐amino‐1‐allylpyridinium chlorides of respective [LCu2Cl3] ( 2 ), [L2Cu2Cl4] ( 3 ), and [LCuCl2] ( 4 ) compositions allowed us to reveal the trend of the inorganic fragment complication which depends on pKa (base) value of the corresponding initial heterocycle.  相似文献   

13.
Centrosymmetric dimers of ZnII with singly deprotonated 2‐[(2‐carbamoylhydrazin‐1‐ylidene)methyl]phenolate, [Zn2(C8H8N3O2)Cl2]·2CH3OH, form an infinite one‐dimensional hydrogen‐bonded chain which is further aggregated by non‐aromatic–aromatic π–π stacking and nonclassical N—H...Cl hydrogen bonding.  相似文献   

14.
Synthesis, Structure, and Properties of [nacnac]MX3 Compounds (M = Ge, Sn; X = Cl, Br, I) Reactions of [nacnac]Li [(2,6‐iPr2C6H3)NC(Me)C(H)C(Me)N(2,6‐iPr2C6H3)]Li ( 1 ) with SnX4 (X = Cl, Br, I) and GeCl4 in Et2O resulted in metallacyclic compounds with different structural moieties. In the [nacnac]SnX3 compounds (X = Cl 2 , Br 3 , I 4 ) the tin atom is five coordinated and part of a six‐membered ring. The Sn–N‐bond length of 3 is 2.163(4) Å and 2.176(5) Å of 4 . The five coordinated germanium of the [nacnac]GeCl3 compound 5 shows in addition to the three chlorine atoms further bonds to a carbon and to a nitrogen atom. In contrast to the known compounds with the [nacnac] ligand the afore mentioned reaction creates a carbon–metal‐bond (1.971(3) Å) forming a four‐membered ring. The Ge–N bond length (2.419(2) Å) indicates the formation of a weakly coordinating bond.  相似文献   

15.
The synthesis, crystal structure studies and solvatochromic behavior of 2‐{(2E,4E)‐5‐[4‐(dimethylamino)phenyl]penta‐2,4‐dien‐1‐ylidene}malononitrile, C16H15N3 (DCV[3]), and 2‐{(2E,4E,6E)‐7‐[4‐(dimethylamino)phenyl]hepta‐2,4,6‐trien‐1‐ylidene}malononitrile, C18H17N3 (DCV[4]), are reported and discussed in comparison with their homologs having a shorter length of the π‐conjugated bridge. The compounds of this series have potential use as nonlinear materials with second‐order effects due to their donor–acceptor structures. However, DCV[3] and DCV[4] crystallized in the centrosymmetric space group P21/c which excludes their application as nonlinear optical materials in the crystalline state. They both crystallize with two independent molecules having the same molecular conformation in the asymmetric unit. The series DCV[1]–DCV[4] demonstrated reversed solvatochromic behavior in toluene, chloroform, and acetonitrile.  相似文献   

16.
The nitridorhenium(V) complexes [ReNCl2(PR2Ph)3] (R = Me, Et) react with the N‐heterocyclic carbenes (NHC) 1,3‐diethyl‐4,5‐dimethylimidazole‐5‐ylidene (LEt) or 1,3,4,5‐tetramethylimidazole‐2‐ylidene (LMe) in absolutely dry THF under complete replacement of the equatorial coordination sphere. The resulting [ReNCl(LR)4]+ complexes (LR = LMe, LEt) are moderately stable as solids and in solution, but decompose in hot methanol under formation of [ReO2(LR)4]+ complexes. With 1,3‐diisopropyl‐4,5‐dimethylimidazole‐5‐ylidene (Li‐Pr), the loss of the nitrido ligand and the formation of a dioxo species is more rapid and no nitridorhenium intermediate could be isolated. The Re‐C bond lengths in [ReNCl(LEt)4]Cl of approximately 2.195Å are relatively long and indicate mainly σ‐bonding in the electron‐deficient d2 system under study. The hydrolysis of the nitrido complexes proceeds via the formation of [ReO3N]2? anions as could be verified by the isolation and structural characterization of the intermediates [{ReN(PMe2Ph)3}{ReO3N}]2 and [{ReN(OH2)(LEt)2}2O][ReO3N].  相似文献   

17.
The model morpholine‐1‐carbothioic acid (2‐phenyl‐3H‐quinazolin‐4‐ylidene) amide (1) reacts with phenacyl bromides to afford N4‐(5‐aryl‐1,3‐oxathiol‐2‐yliden)‐2‐phenylquinazolin‐4‐amines (4) or N4‐(4,5‐diphenyl‐1,3‐oxathiol‐2‐yliden)‐2‐phenyl‐4‐aminoquinazoline ( 5 ) by a thermodynamically controlled reversible reaction favoring the enolate intermediate, while the 4‐[4‐aryl‐5‐(2‐phenylquinazolin‐4‐yl)‐1,3‐thiazol‐2‐yl]morpholine ( 8 ) was produced by a kinetically controlled reaction favoring the C‐anion intermediate. 1H nmr, 13C nmr, ir, mass spectroscopy and x‐ray identified compounds ( 4 ), ( 5 ) and ( 8 ).  相似文献   

18.
A highly efficient one‐pot simple synthesis of 2‐[2‐oxo‐2H‐pyrido[1,2‐a]pyridmidn‐3(4H)‐ylidene)]acetic acid is described. The rearrangement of 2‐[2‐oxo‐2H‐pyrido[1,2‐a]pyridmidn‐3(4H)‐ylidene)]acetic acid in the presence of polyphosphoric acid (PPA) yielded a seven‐membered diazepine with decarboxylation and ring expansion.  相似文献   

19.
The synthesis, reactivity, and properties of boryl‐functionalized σ‐alkynyl and vinylidene rhodium complexes such as trans‐[RhCl(?C?CHBMes2)(PiPr3)2] and trans‐[Rh(C?CBMes2)(IMe)(PiPr3)2] are reported. An equilibrium was found to exist between rhodium vinylidene complexes and the corresponding hydrido σ‐alkynyl complexes in solution. The complex trans‐[Rh(C?CBMes2)(IMe)(PiPr3)2] (IMe=1,3‐dimethylimidazol‐2‐ylidene) was found to exhibit solvatochromism and can be quasireversibly oxidized and reduced electrochemically. Density functional calculations were performed to determine the reaction mechanism and to help rationalize the photophysical properties of trans‐[Rh(C?CBMes2)(IMe)(PiPr3)2].  相似文献   

20.
N? C bonded (non‐bridged) 5‐(1,2,3‐triazol‐1‐yl)tetrazoles were synthesized by the CuI‐catalyzed 1,3‐dipolar azide–alkyne cycloaddition click reaction using 5‐azido‐N‐(propan‐2‐ylidene)‐1H‐tetrazole ( 1 ). For example, the click reaction of 1 in the presence of CuSO4?5 H2O and Na ascorbate at 65–70 °C for 48 h in CH3CN/H2O co‐solvent was found to be limited to only terminal alkynes that have electron‐withdrawing groups, CF3C?CH ( 2 a ) and SF5C?CH ( 2 b ), giving rise to isopropylidene‐[5‐(4‐trifluoromethyl‐1,2,3‐triazol‐1‐yl)tetrazol‐1‐yl]amine ( 3 a ) and isopropylidene‐[5‐(4‐pentafluorosulfanyl‐1,2,3‐triazol‐1‐yl)tetrazol‐1‐yl]amine ( 3 b ) in 47 % and 66 % yields, respectively. When carried out under conditions using CuI and 2,6‐lutidine as catalysts at 0 °C for 13 h in CHCl3, the click reaction was versatile toward alkynes even those having electron‐donating groups. Properties of new products were determined and compared with those of 1 . Heats of formation, detonation pressures, detonation velocities and impact sensitivities are reported for these new 5‐(1,2,3‐triazol‐1‐yl)tetrazoles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号