共查询到20条相似文献,搜索用时 0 毫秒
1.
Jaap Schut Manfred Stamm Michel Dumon Jean-François Gérard 《Macromolecular Symposia》2003,198(1):355-362
Syndiotactic polystyrene (sPS) has to be processed at high temperatures (i.e. >290°C due to its melting point of 270°C), which approaches its degradation temperature. We aim to facilitate the processing of sPS by lowering its melt temperature and viscosity with a curable epoxy/amine model system as reactive solvent, which will result in a thermoplastic-thermoset polymer blend. As a first step we therefore investigated the melting behaviour of sPS in epoxy monomer, established its phase diagram, and investigated the crystalline form of sPS in these mixtures. DGEBA epoxy monomer is found to be a solvent for syndiotactic polystyrene at temperatures above 220°C. The DGEBA-sPS phase diagram was established by means of DSC, on the basis of crystallization and melting peaks. The form of the curve in the phase diagram indicates that DGEBA is a poor solvent for sPS. In WAXS studies of blends only the β crystalline form was detected, not the δ form, thus no sPS-DGEBA polymer-solvent compounds (clathrates) were detected. However, DGEBA can still serve as a monomer for improved processing as it depresses the crystallization temperature by 20 to 60 K upon addition of 20 to 90 wt% DGEBA respectively, while a 16 to 45 K melting peak depression can be observed by adding 20 to 90 wt% DGEBA. 相似文献
2.
Che-Chian Ko Thein Kyu Steven D. Smith 《Journal of Polymer Science.Polymer Physics》1995,33(3):517-525
Dynamics of phase separation in bisphenol-A polycarbonate (PC)/syndiotactic polymethyl methacrylate (sPMMA) blends has been investigated by means of time-resolved light scattering. Solvent-cast films of the PC/sPMMA blends were transparent, suggestive of miscible character. Several temperature jumps were carried out at a 50/50 PC/sPMMA composition from a homogeneous state (room temperature) into a two-phase regime. The process of phase separation first occurred for some considerable period, then it was followed by phase dissolution driven by chemical reaction. The thermodegradative reaction of sPMMA triggered the dissolution process by probably forming PC/sPMMA graft or random copolymers at the interface, which eventually resulted in a single phase. However, annealing at elevated temperatures for an extended period could lead to cross-linking, and thus a two-phase structure could be fixed permanently. The early stage of spinodal decomposition was interpreted in terms of the linearized Cahn-Hilliard theory. In the late stages of spinodal decomposition, the relationship between scattering peak wavenumber and time was found to obey a power law, but the exponents showed a strong dependence on temperature jumps. The temporal universal scaling failed due to the influence of the chemical reaction. © 1995 John Wiley & Sons, Inc. 相似文献
3.
sPS/PET/SsPS-H共混体系的研究 总被引:4,自引:0,他引:4
以自制间规聚苯乙烯(sPS)功能化合成的磺化间规聚苯乙烯(SsPS-H)作相容剂,研究其对sPS/PET共混物微相结构与性能的影响,发现SsPS-H能够有效地改善二者的相容性,当sPS/PET/SsPS-H为85/15/2(重量比)时,冲击强度达到11.4kJ/m^2,为纯sPS的3倍,此时材料的弯曲强度为39.1MPa,下降约8%;DMA结果表明,随SsPS-H用量的增加,共混物的Tg逐渐提高;DSC分析结果表明,共混体系中sPS的熔点不受SsPS-H含量的影响,而PET的熔点在加入6份SpPS-H时明显降低。sPS在达到最大结晶速率的温度均随SsPS-H用量的增加先提而后下降。SEM观察到加入SsPS-H后,PET分散相的尺寸减小,且均匀程度增加,共混物室温下冲击断裂显著地由脆性转变为韧性,当加入6份SsPS-H后,冲击断裂又出现脆性。 相似文献
4.
X-ray diffraction and optical microscopy characterization were performed to evaluate the phenomenon of alteration of polymorphism of syndiotactic polystyrene (s-PS) in the presence of other blending miscible polymers: poly(2,6-dimethyl-p-phenylene oxide) (PPO) or atactic polystyrene (a-PS). Both α and β crystal forms were observed in the neat s-PS sample, but only β-form crystal was found in miscible blends of s-PS with a-PS or PPO. The order and neighboring chain segments of neat s-PS are different from those of s-PS/PPO or s-PS/a-PS blends; thus, it is plausible that the greater randomness in the melt state of s-PS/a-PS or s-PS/PPO blends might be unfavorable for formation of α-form crystals from melts. The final spherulitic morphology the s-PS/a-PS or s-PS/PPO blends suggests that the amorphous-state miscibility of does not change much the spherulitic structure of s-PS. The radial growth rate is, in general, depressed with the presence of blending miscible polymers in s-PS of equal Tg or PPO of higher Tg. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 2725–2735, 1998 相似文献
5.
Naoto Tsutsumi Shigenobu Kizu Wataru Sakai Tsuyoshi Kiyotsukuri 《Journal of Polymer Science.Polymer Physics》1997,35(12):1869-1876
This article presents thermal diffusivity (D) measurements by flash radiometry for the polymer blend of polystyrene (PS) and poly(vinyl methyl ether) (PVME) with lower critical solution temperature (LCST) phase diagram. Dependence of D on PS content measured at 100°C coincides a phase diagram determined by a cloud point measurement. D value for the blend decreases with increasing PS content and has minimum value at the PS content around 20 wt % from which D increases again with increasing PS content. If the concentration fluctuation between two components in the miscible states at the temperature close to LCST causes the remarkable phonon scattering, the composition dependence of D would resemble the phase diagram. D for the sample in the phase-separated state is larger than that for the miscible state. The larger D in the phase-separated sample would be due to the decrease of the total surface area microscopically contacted to the counter component in the phase-separated state. Dependence of D on temperature for the phase-separated sample is quite different from that of the miscible one. On an isothermal measurement of D for PS/PVME (10 : 90) at 110°C just below the cloud point, D started to increase at time above 100 min and leveled out above 250 min. Isothermal observation of sample film by a differential interference contrast microscopy showed the creation of some structure due to the nucleation and growth of interface at 225 min and it became obvious above 250 min. Thus, the increase in D at 110°C implies that D can sensitively reflect the change in microscopic structures which follows the nucleation and growth of interface. © 1997 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 35 : 1869–1876, 1997 相似文献
6.
The multiple melting behavior of syndiotactic polystyrene (sPS) and its possible mechanisms via preexisting lamella types and/or scanning-induced lamellar reorganization were investigated by using X-ray diffraction, DSC, and scanning electron microscopy. Melt-crystallized sPS samples, upon DSC scanning, exhibited three melting peaks (I, II, III). A morphological analysis showed that flat-on lamellae develop first, which yield P-I and P-II melting, and during scanning recrystallize to thickened edge-on lamellae with a P-III melting peak. Upon scanning, melting of P-I (crystal of the lowest melting peak) is followed by repacking into thickened P-III crystal, the lamella of which also reoriented to a perpendicular orientation. The P-II crystal, however, melts at temperatures too close to the melting temperature of P-III; thus, during scanning up, the P-II crystal simply melts without sufficient time to repack into the thickened P-III crystal. In addition to the P-III crystal species that can be added by melting P-I and repacking to P-III, it is believed that preexistence of different lamella crystals was jointly responsible for the multiple melting. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 3210–3221, 2000 相似文献
7.
Minqiao Ren Changjiang Wu Jianfang Sheng Meifang Guo Erqiang Chen 《Macromolecular Symposia》2012,312(1):81-87
Summary: A series of polyethylene (PE) blends consisting of a high density polyethylene (HDPE) and a linear low density polyethylene (LLDPE) with a butene-chain branch density of 77/1000 carbon was prepared at different concentrations. The LLDPE only crystallized below 50 °C, therefore, above 80 °C and below the melting temperature of HDPE, only HDPE crystallized in the PE blends. A specifically designed multi-step experimental procedure based on thermal analysis technique was utilized to monitor the liquid–liquid phase separation (LLPS) of this set of PE blends. The main step was first to quench the system from the homogeneous temperatures and isothermally anneal them at a prescribed temperature higher than the equilibrium melting temperature of the HDPE for the purpose of allowing the phase morphology to develop from LLPS, and then cool the system at constant rate to record the non-isothermal crystallization. The crystallization peak temperature (Tp) was used to character the crystallization rate. Because LLPS results in HDPE-rich domains where the crystallization rates are increased, this technique provided an experimental measure to identify the binodal curve of the LLPS for the system indicated by increased Tp. The result showed that the LLPS boundary of the blend measured by this method was close to that obtained by phase contrast optical microscopy method. Therefore, we considered that the thermal analysis technique based on the non-isothermal crystallization could be effective to investigate the LLPS of PE blends. 相似文献
8.
Annika Kriisa Sung S. Park Connie B. Roth 《Journal of Polymer Science.Polymer Physics》2012,50(4):250-256
We have investigated the fluorescence emission spectra of pyrene and anthracene dyes covalently bonded to polystyrene (PS) upon phase separation from poly(vinyl methyl ether) (PVME). The specific chemical structure of the fluorescent labels is found to affect the measured phase separation temperature TS, with fluorophores covalently attached in closer proximity to the PS backbone identifying phase separation a few degrees earlier. The sharp increase in fluorescence intensity upon phase separation that occurs for all fluorophores with little change in spectral shape is consistent with a mechanism of static fluorescence quenching resulting from the specific interaction with a nearby quenching molecular unit. Based on recent work that has identified a weak hydrogen bond occurring between the aromatic hydrogens of PS and the ether oxygen of PVME, we believe a similar weak hydrogen bond is likely occurring between the PVME oxygen and the aromatic dyes providing a local (few nanometer) sensitivity to phase separation. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2011 相似文献
9.
The effects of the compatibilizer polyethylene grafted with glycidyl methacrylate (PE‐g‐GMA) on the properties of low‐density polyethylene (LDPE) (virgin and reprocessed)/corn starch blends were studied. LDPE (virgin and reprocessed)/corn starch blends containing 30, 40 and 50 wt% starch, with or without compatibilizer, were prepared by extrusion and characterized by the melt flow index (MFI), tensile test, dynamic mechanical analysis (DMTA) and light microscopy. The addition of starch to LDPE reduced the MFI values, the tensile strength and the elongation at break, whereas the modulus increased. The decreases in the MFI and tensile properties were most evident when 40 and 50 wt% starch were added. Blends containing 3 wt% PE‐g‐GMA had higher tensile strength values and lower MFI values than blends without compatibilizer. Light microscopy showed that increasing the starch content resulted in a continuous phase of starch. Copyright © 2005 John Wiley & Sons, Ltd. 相似文献
10.
Wenzhong Ma Shuangjun Chen Jun Zhang Xiaolin Wang Wenhu Miao 《Journal of Polymer Science.Polymer Physics》2009,47(3):248-260
Poly(vinylidene fluoride) (PVDF) blend microporous membranes were prepared by PVDF/poly(methyl methacrylate) blend (with mass ratio = 70/30) via thermally induced phase separation. Benzophenone (BP) and methyl salicylate (MS) were used as diluents. The phase diagram calculations were carried out in terms of a pseudobinary system, considering the PVDF blend to be one component. The crytallization behaviors of PVDF in the dilutions were detected by differential scanning calorimetry measurement. In these two systems, the melting and crystallization temperatures leveled off in the low polymer concentration (<40 wt %), but shifted to a higher temperature when the polymer concentration >40 wt %. The calculated crystallinity of PVDF for samples with low polymer concentrations was greater than those with high polymer concentrations, because of the limited mobility of polymer chains at a high polymer concentration. The membrane structure as determined by scanning electron microscopy depended on the phase separation mechanism. The quenched samples mainly illustrated the occurrence of crystallization on the same time scale as the liquid–liquid phase separated, resulting in the obvious spherulitic structure with small pores in the spherulites. As the polymer concentration increased, the size of the spherulites and pores within the spherulite was decreased. The evaluated porosity for BP diluted system was higher than that for MS diluted system, and decreased with the increased polymer concentration. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 248–260, 2009 相似文献
11.
The development of texture which exists in polymer spherulites grown from single phase melts containing an appreciable amount of noncrystallizable material was investigated. This texture generally consists of lamellar bundles separated by amorphous regions, both of which are typically 0.1–1 μm thick. A space–time finite element model previously developed by us was used to simulate the growth of a group of polymer lamellae. The model determines the impurity concentration field in the melt surrounding the growing lamellae and tracks the growth of each lamella. Important variables are the initial melt concentration of noncrystallizable material, the mass diffusion coefficient of noncrystallizable species, lamellar thickness, long period, and the rate of molecular attachment at the growth front. Under certain conditions, bundles did indeed develop during the simulations. These results were used to predict bundle thicknesses. The predictions of bundle texture were compared to actual textures observed in blends of syndiotactic and atactic polystyrene. It was found both experimentally and numerically that bundle thickness was a strong function of crystallization temperature and a relatively weak function of both the initial composition of noncrystallizable species and the degree of crystallinity of the lamellar stack. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 873–888, 1998 相似文献
12.
13.
《Journal of Polymer Science.Polymer Physics》2018,56(9):706-717
The polypropylene‐g‐polystyrene (PP‐g‐PS) copolymers with different grafting ratios are used as compatibilizers to control the size of polystyrene (PS) particles at nanometer scale in polypropylene (PP) matrix. Then the PP/PS insulating nanocomposites (containing 10 wt % PS calculated from PS and PP‐g‐PS) are manufactured. With the increase in grafting ratio of PP‐g‐PS, the size of PS particle is reduced and the interfacial adhesion is enhanced. Meanwhile, the dielectric properties, DC breakdown strength and volume resistivity are increased with the decreasing of PS particle size. The spherulite size of PP is decreased and the boundary between crystals and amorphous regions is blurred or even disappears due to the presence of PS nanoparticles. This evolution of PP structure is attributed to the serious entanglements of PP and PS molecular chains. Finally, the correlation between morphological structure and electrical properties is ultimately established based on the in‐depth understanding of the molecular chain movement, crystal structure, and phase morphology. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2018 , 56, 706–717 相似文献
14.
Nylon-6/polystyrene (PS) blends were reactively compatibilized by addition of various anhydride functionalized polystyrenes. The morphology of the blends was examined using a scanning electron microscopy (SEM) technique. The particle size of the dispersed styrenic phase was about 3.2 μm for the uncompatibilized 8/2 Nylon-6/PS blend while those of the compatibilized blends were decreased by as much as two orders of magnitude depending on the amount and type of the functionalized polystyrene (FPS) added. Several low-molecular weight polystyrenes with terminal anhydride groups, prepared by two different functionalization methods, were examined. The effect of molecular weight on particle size reduction depended on the basis of comparison, mass of additive, or moles of anhydride units. A high-molecular weight random copolymer of styrene and maleic anhydride was most effective when compared on a mass basis. The increase in adhesion between the Nylon-6 and the styrenic phases caused by the in situ reaction was evaluated by a lap shear technique. The free polystyrene, Nylon-6, and Nylon-FPS copolymer formed were separated by solvent extraction technique using formic acid and toluene. The extent of coupling reaction between the functionalized polystyrenes and Nylon-6 ranged from 25 to 43%. © 1992 John Wiley & Sons, Inc. 相似文献
15.
16.
M. I. Giannotti I. Mondragon M. J. Galante P. A. Oyanguren 《Journal of Polymer Science.Polymer Physics》2004,42(21):3964-3975
Epoxy–aromatic diamine formulations are simultaneously modified with two immiscible thermoplastics (TPs), poly(ether imide) (PEI) and polysulfone (PSF), in concentrations ranging from 5 to 15 wt %. The epoxy monomer is based on diglycidyl ether of bisphenol A and the aromatic diamines (ADs) are either 4,4′‐diaminodiphenylsulfone (DDS) or 4,4′‐methylenebis(3‐chloro 2,6‐diethylaniline) (MCDEA). Using phase diagrams developed in Part I of this series, thermal cycles are selected to generate different morphologies. It is found that, whatever the AD employed, a particulate morphology is obtained when curing blends that are initially homogeneous. In the case of DDS‐cured blends, a unimodal particle size distribution of PSF and PEI dispersed in a continuous epoxy‐rich phase is observed. By contrast, the MCDEA‐cured blends show a bimodal particle size distribution for all PSF/PEI relations that are analyzed. A completely different morphology, characterized by a distribution of irregular TP‐rich domains dispersed in an epoxy‐rich phase (double phase morphology), is obtained when curing blends that are initially immiscible. An X‐ray analysis of the different phases makes it possible to determine their qualitative composition. The dynamic mechanical behavior of fully cured blends is also discussed. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 3964–3975, 2004 相似文献
17.
It has been clarified that syndiotactic polystyrene (sPS) forms co‐crystalline structures with polyethylene glycol dimethyl ethers (PEGDMEs) with molecular weights ranging from 178 to 1 000 g · mol−1 through a guest exchange procedure assisted by a plasticizing agent. The PEGDME molecules are incorporated into the spaces between sPS polymer sheets consisting of (T2G2)2 helices. The results of X‐ray diffraction and gravimetric measurements suggest that one or less molecules are included per unit cell for PEGDME with average molecular weight of 1 000 g · mol−1, which indicates the possibility that longer polymeric molecules can be introduced into sPS lattices with multiple site occupation.
18.
M. I. Giannotti M. L. Foresti I. Mondragon M. J. Galante P. A. Oyanguren 《Journal of Polymer Science.Polymer Physics》2004,42(21):3953-3963
Epoxy–aromatic diamine formulations are simultaneously modified with two immiscible thermoplastics (TPs), poly(ether imide) (PEI) and polysulfone (PSF). The epoxy monomer is based on diglycidyl ether of bisphenol A and the aromatic diamines (ADs) are either 4,4′‐diaminodiphenylsulfone or 4,4′‐methylenebis(3‐chloro 2,6‐diethylaniline). The influence of the TPs on the epoxy–amine kinetics is investigated. It is found that PSF can act as a catalyst. The presence of the TP provokes an increase of the gel times. Cloud‐point curves (temperature vs. composition) are shown for epoxy/PSF/PEI and epoxy/PSF/PEI/AD initial mixtures. Phase separation conversions are reported for the reactive mixtures with various TP contents and PSF/PEI proportions. On the basis of phase separation and gelation curves, conversion–composition phase diagrams at constant temperature are generated for both systems. These diagrams can be used to design particular cure cycles to generate different morphologies during the phase separation process, which is discussed in the second part of this series. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 3953–3963, 2004 相似文献
19.
Wojciech Jasinski Véronique Carlier Roger Legras Werner Mormann 《Macromolecular Symposia》2003,198(1):323-334
A series of aromatic liquid-crystalline polyesters with different composition have been synthesized to adjust transition temperatures and molecular weight. Miscibility of polyesters with bisphenol-A-diglycidyl ether (DEGBA), 4,4′-methylene-bis(3-chloro-2,6-dimethylaniline) (MCDEA) and the influence on transition temperatures has been studied. Miscibility of binary and ternary mixtures was found over the whole range of composition depending on the temperature. Thermoset formation by curing of LC-polyester / DEGBA / MCDEA mixtures containing different amounts of polyester resulted in reaction-induced phase separation with polyester content from 30 to 50 wt.%. Cloud point techniques, scanning electron microscopy (SEM) and dynamic mechanical thermal analysis (DMTA) have been applied. 相似文献
20.
研究了磺化间规聚苯乙烯磺酸锌盐(SsPS-Zn)的增容作用以及sPS/PA6/SsPS-Zn三组分塑料合金的力学、热学性能和微观形态结构。结果表明:SsPS-Zn的加入明显地改善了sPS/PA6二组分合金的力学性能,在sPS/PA6/SsPS-Zn重量组成为80/20/5时,合金冲击强度最大,为14.2kJ/m^2。DMA和SEM结果表明,SsPS-Zn在合金中起到了降低微相尺寸和加强相间界面粘结的作用,可显著提高sPS和PA6两组分间的相容性,FTIR研究表明SsPS-Zn的磺酸锌基团和PA6的酰胺基之间存在相互作用。 相似文献