首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mg3Ir3Si8, a New Magnesium Iridium Silicide with Si4 Tetrahedra and Si12 Truncated Tetrahedra The ternary silicide Mg3Ir3Si8 (cubic, a = 1221.4(1) pm, space group , 8 formula units per unit cell) was prepared by reaction of the elemental components in a sealed molybdenum container (1000 °C, 1 d, cooled with 100 °/h). The crystal structure was determined from single crystal data. Short distances in the three‐dimensional iridium silicon network indicate strong Ir‐Si‐bonding (d(Ir‐Si) = 240.5(2) and 245.6(1) pm). In addition, homonuclear bonding seems to be important, resulting in the formation of Si4‐tetrahedra (d(Si‐Si) = 257(1) pm), and Mg centered Si12‐polyhedra with the shape of truncated tetrahedra (d(Si‐Si) = 241(1) and 261.0(9) pm). Furthermore, Mg4‐tetrahedra with Mg‐Mg‐distances of 355(2) pm are formed. The structure may be derived from the structure of the isotypic compounds Mg5Pd10Si16 and Mg5Pt10Si16 by adding a Mg siteset and subtracting a platinum metal siteset. It can be described by an expanded cubic “close” packing of MgIr6‐octahedra in which Si4‐tetrahedra reside in the octahedral holes while Mg4‐tetrahedra and MgSi12‐units occupy one half of the tetrahedral holes each.  相似文献   

2.
New intermetallic rare earth iridium silicides Sm3Ir2Si2, HoIrSi, and YbIrSi were synthesized by reaction of the elements in sealed tantalum tubes in a high‐frequency furnace. The compounds were investigated by X‐ray diffraction both on powders and single crystals. HoIrSi and YbIrSi crystallize in a TiNiSi type structure, space group Pnma: a = 677.1(1), b = 417.37(6), c = 745.1(1) pm, wR2 = 0.0930, 340 F2 values for HoIrSi, and a = 667.2(2), b = 414.16(8), c = 742.8(2) pm, wR2 = 0.0370, 262 F2 values for YbIrSi with 20 parameters for each refinement. The iridium and silicon atoms build a three‐dimensional [IrSi] network in which the holmium(ytterbium) atoms are located in distorted hexagonal channels. Short Ir–Si distances (246–256 pm in YbIrSi) are indicative for strong Ir–Si bonding. Sm3Ir2Si2 crystallizes in a site occupancy variant of the W3CoB3 type: Cmcm, a = 409.69(2), b = 1059.32(7), c = 1327.53(8) pm, wR2 = 0.0995, 383 F2 values and 27 variables. The Ir1, Ir2, and Si atoms occupy the Co, B2, and B1 positions of W3CoB3, leading to eight‐membered Ir4Si4 rings within the puckered two‐dimensional [IrSi] network. The Ir–Si distances range from 245 to 251 pm. The [IrSi] networks are separated by the samarium atoms. Chemical bonding in HoIrSi, YbIrSi, and Sm3Ir2Si2 is briefly discussed.  相似文献   

3.
Synthesis and Crystal Structures of the Calcium Iridium Silicides Ca3Ir4Si4 and Ca2Ir2Si The new compounds Ca3Ir4Si4 und Ca2Ir2Si were prepared by reaction of the elemental components in sealed tantalum ampoules at 1200 °C. Their structures were determined from X‐ray single crystal data. Ca3Ir4Si4(cubic, space group I4¯3m, a = 7.4171(2)Å, Z = 2) crystallizes with the Na3Pt4Ge4 type structure. For Ca2Ir2Si (monoclinic, space group C2/c, a = 9.6567(5)Å, b = 5.8252(2)Å, c = 7.3019(4)Å, β = 100.212(2)°, Z = 4) a new structure was found. Chains of edge sharing, heavily distorted SiIr4‐tetrahedra (Ir‐Si: 2.381 and 2.414Å) are connected via short Ir—Ir‐contacts (2.640Å) to form an open Ir/Si‐framework accommodating a three‐dimensional arrangement of calcium atoms (Ca—Ca: 3.413 ‐ 3.948Å).  相似文献   

4.
Two Metal‐rich Phosphides – The Crystal Structures of Mg8Ir23P8 and Mg13Pt26P10 Mg8Ir23P8 (a = 8.586(4), b = 16.998(7), c = 3.959(2) Å) and Mg13Pt26P10 (a = 8.834(2), b = 21.154(4), c = 4.074(1) Å) crystallize in new structure types (Pbam, Z = 1), which were determined by single crystal methods. In the Ir compound four of seven crystallographically different Ir atoms build up cuboctahedra centered by other Ir atoms. The cuboctahedra are connected with each other via common faces to strands along [001] and they are linked with Ir5 square pyramids centered by P atoms to a three‐dimensional network, in which some of the Ir atoms are part of both polyhedra. The Mg atoms are situated in the holes of the network coordinated by 14 nearest neighbours. The structure of Mg13Pt26P10 is quite similar and contains cuboctahedra too, but they are formed by both kinds of metal atoms building two different polyhedra. The first type is centered by Pt atoms, whereas the centers of the other one are occupied by Mg atoms and P2 dumb‐bells with a statistical distribution. The cuboctahedra are linked with each other via common faces along [001] and edges along [100] and they are connected with Pt5 square pyramids centered by P atoms in a similar fashion like in Mg8Ir23P8.  相似文献   

5.
ACu9X4 ‐ New Compounds with CeNi8, 5Si4, 5 Structure (A: Sr, Ba; X: Si, Ge) The new compounds SrCu9Si4 (a = 8.146(1), c = 11.629(2)Å), BaCu9Si4 (a = 8.198(2), c = 11.735(2)Å), SrCu9Ge4 (a = 8.273(2), c = 11.909(5)Å), and BaCu9Ge4 (a = 8.338(4), c = 12.011(7)Å) are formed by reaction of the elements at 1000° ‐ 1100 °C. They are isotypic (I4/mcm, Z = 4) and crystallize in an ordered variant of the cubic NaZn13 type structure, also built up by the binary phase BaCu13. In the ternary compounds the positions of Cu2 are orderly occupied by copper and silicon and germanium, respectively. This results in a lowering of symmetry and a distortion of the polyhedra. The metallic conductivity of the compounds was confirmed by measurements on BaCu9Si4.  相似文献   

6.
Ba6Mg10.8Li1.2Si12, the First Compound Containing Three Different Zintl Anions A novel quaternary Zintl phase of silicon is presented. The crystal structure of Ba6Mg10.8Li1.2Si12 (Pnma, a = 22.257(5), b = 4.5804(9), c = 14.007(3) Å) is the first example of a silicide with isolated silicon atoms, Si2 dumb‐bells and Si3 chains thus with three different Zintl anions within one structure. Accompanying quantumchemical investigations in the Extended Hückel framework give detailed insights in the present bond situation and support general trends found in unusual Zintl phases.  相似文献   

7.
New Ternary Rhodium‐ and Iridium‐Phosphides and ‐Arsenides with U4Re7Si6 Type Structure Single crystals of Mg4Rh7P6 (a = 7.841(1) Å), Mg4Rh7As6 (a = 8.066(1) Å), Yb4Rh7As6 (a = 8.254(1) Å) and Mg4Ir7As6 (a = 8.082(2) Å) were prepared by heating mixtures of the elements in a lead flux and were investigated by means of X‐ray methods. The compounds are isotypic and they crystallize in the U4Re7Si6 type structure (Im 3 m; Z = 2), which is formed by CeMg2Si2 analogous units, which are twisted against each other. The Rh(Ir) atoms building these units are coordinated tetrahedrally by the non‐metal. The P(As) atoms of six units form a regular octahedron, which is centred by an additional Rh(Ir) atom. This second structural segment corresponds to the perovskit type structure.  相似文献   

8.
Synthesis, Structure, and Properties of the Tantalum‐rich Silicide Chalcogenides Ta15Si2QxTe10–x (Q = S, Se) The quaternary tantalum silicide chalcogenides Ta15Si2QxTe10–x (Q = S, Se) are accessible from proper, compacted mixtures of the respective dichalcogenides, silicon and elemental tantalum at 1770 K in sealed molybdenum tubes. The structures were determined from the strongest X‐ray intensities of fibrous crystals with cross sections of about 3 μm and confirmed by fitting the profile of single phase X‐ray diffractograms. The phases Ta15Si2S3.5Te6.5 and Ta15Si2Se3.5Te6.5 crystallize in the monoclinic space group C2/m with two formula units per unit cell, a = 2393.7(1) pm, b = 350.08(2) pm, c = 1601.2(1) pm, β = 124.700(4)°, and a = 2461.3(2) pm, b = 351.70(2) pm, c = 1601.7(1) pm, β = 124.363(5)°, respectively. Tri‐capped trigonal prismatic Ta9Si clusters stabilized by encapsulated Si atoms can be seen as the characteristic unit of the structure. The clusters are fused into twin columns which are connected by additional Ta atoms, thus forming corrugated layers. The remaining valences at the surfaces of the layered Ta–Si substructure are saturated by those of chalcogen atoms which are coordinated only from one side by three, four or five Ta atoms. Few bridging covalent Ta–S–Ta and Ta–Se–Ta bonds and, otherwise, dispersive interactions between the Q atoms hold these nearly one nanometer wide slabs together. The phases are moderate metallic conductors. There is no evidence for any electronic instability within 10–310 K in spite of the high anisotropy of the structures.  相似文献   

9.
The binary intermetallic compound NiMg2 (own structure type) forms a pronounced solid solution NiMg2?xSnx. The structure of NiMg1.85(1)Sn0.15(1) was refined on the basis of single crystal X‐ray data: P6422, a = 520.16(7), c = 1326.9(1) pm, wR2 = 0.0693, 464 F2 values, and 20 variables. With increasing magnesium/tin substitution, the structure type changes. Crystals with x = 0.22 and 0.40 adopt the orthorhombic CuMg2 type: Fddd, a = 911.0(2), b = 514.6(1), c = 1777.0(4) pm, wR2 = 0.0427, 394 F2 values for NiMg1.78(1)Sn0.22(1), and a = 909.4(1), b = 512.9(1), c = 1775.6(1) pm, wR2 = 0.0445, 307 F2 values for NiMg1.60(1)Sn0.40(1) with 19 variables per refinement. The nickel atoms build up almost linear chains with Ni–Ni distances between 260 and 263 pm in both modifications where each nickel atom has coordination number 10 with two nickel and eight Mg/Sn neighbors. Both magnesium sites in the NiMg2 and CuMg2 type structures show Mg/Sn mixing. The Ni polyhedra are condensed leading to dense layers which show a different stacking sequence in both structure types. The crystal chemical peculiarities of these intermetallics are briefly discussed.  相似文献   

10.
11.
Abstract. The new condensed double‐chain cluster complex compound {Ir2Gd5}Br5 was obtained from a reaction of GdBr3 with metallic gadolinium and iridium at elevated temperatures. The thin black needles crystallize with the orthorhombic crystal system, space group Pnma(no. 62); a = 1255.4(1) pm, b = 414.05(3) pm, c = 2633.8(3) pm,Z = 4, R1/wR2 = 0.0504/0.0346 for all data. Monocapped trigonal prisms of gadolinium atoms with endohedral iridium atoms are connected by common rectangular faces to chains and further by edges to double chains, which form a herringbone arrangement. The double chains are coordinated by bromido ligands and are connected in accord with the formulation {Ir2Gd5}Br4/2iBr2/3i(e)Br1/3i(f)Br2/2i–i(e/f)Br1/2i–aBr1/2a–i.  相似文献   

12.
New Sr Compounds with Planar Al‐Si/Ge Anions and a Correction of SrSi‐II and SrGe0.76 Planar anions with considerable pπpπ interactions between heavier group 13 and 14 elements are observed in several alkaline earth trielides and tetrelides. In the intermetallics of the series SrAlxGe2?x (border phases: x = 1: , a = 429.4(3), c = 474.4(3) pm, Z = 1, R1 = 0.0305, SrPtSb type and x = 1.6: P6/mmm, a = 440.4(2), c = 478.2(2) pm, Z = 1, R1 = 0.0125, AlB2 type) graphite analogue planar Al/Ge nets with short Al‐Ge bonds are stacked in identical orientation, showing inter‐layer distances of approx. 475 pm. Starting from the related planar ribbons of condensed six‐membered rings in the known intermetallics (MIV = Si, Ge) a series of new metal‐rich oxides with chain pieces consisting of three, two and finally only one six‐membered ring have been prepared and characterized on the basis of single crystal X‐ray data. The formal fragmentation of the ribbons is achieved by the incorporation of [OSr6] octahedra, chains of which (connected via common corners) exactly fit the distance between the planar anions. The structures of the two compounds (MIV = Si, Ge; formerly erroneously reported as SrSi and SrGe0.76, space group Immm, a = 482.48(5)/484.55(8), b = 1306.5(2)/1342.2(2), c = 1814.0(2)/1857.4(3) pm, Z = 2, R1 = 0.0369/0.0316) contain isolated planar anions [M2Al2M2Al2M2]18? with only one six‐membered ring. In the monoclinic structures of the silicide Sr13[Al6Si8][O] (C2/m, a = 2245.1(4), b = 482.76(5), c = 1720.6(5) pm, β=125.21(2)°, Z = 2, R1 = 0.0579) and the germanide Sr16[Al8Ge10][O] (C2/m, a = 2287.23(14), b = 484.94(3), c = 2065.70(13) pm, β=120.150(4)°, Z = 2, R1 = 0.0730) anions [Si2Al2Si2Al2Si2Al2Si2] and [Ge2M2Ge2M2Ge2M2Ge2M2Ge2] with two and three six‐membered rings are left as fragments of the ribbons in Sr3Al2M2. The puzzling bonding situation in these type of polar intermetallics at the Zintl border is calculated (using the DFT FP‐LAPW approach) for the structures with manageably small unit cells and discussed for the series SrAlM – Sr3Al2M2 – Sr16[Al8M10][O] – Sr13[Al6M8][O] – Sr10[Al4M6][O].  相似文献   

13.
PrSeTe2, an Ordered Ternary Polychalcogenid with NdTe3 Structure Single crystals of PrSeTe2 have been obtained by reaction of the elements in a LiCl/RbCl flux at 970 K during 7 days. PrSeTe2 crystallizes in space group Cmcm (No. 63), with four formula units per unit cell. The lattice constants are a = 426.1(1) pm, b = 2506.0(5) pm, and c = 426.0(1) pm. The crystal structure is an ordered ternary variant of the NdTe3 type. It consists of a puckered double layer of praseodymium and selenium atoms [PrSe] sand wiched by two square planar layers of tellurium atoms [Te] yielding a stacking —[Te]—[Te]—[PrSe]— along [010]. The Te atoms build regular 44 nets with Te—Te distances of 301, 3(1) pm. DFT calculations propose that this compounds should be metallic mainly due to contributions of the Pr f‐electrons. The band structure shows no significance for a distortion in the [Te]—nets.  相似文献   

14.
The Cluster Salts Bi14Si2MI12 (M = Rh, Ir): [Bi8Si2] and [MBi6I12] Building Groups in CsCl‐like Structure The reaction of bismuth and iridium with iodine in evacuated quartz ampoules at 1320 K yields black, air insensitive crystals of Bi14Si2IrI12. The silicon therein is abstracted from the ampoule material whereby the oxygen is gettered in BiOI. The synthesis of Bi14Si2RhI12 requires the addition of niobium, which gives NbOI2 with the oxygen originating from the SiO2. X‐ray diffraction on single crystals showed that the two isotypic compounds crystallize in the space groups P 4/m c c with a = 1018.3(1), c = 2020.1(4) pm for M = Ir, and a = 1019.0(1), c = 2018.7(4) pm for M = Rh. The crystal structures consist of two types of isolated clusters, which form a CsCl‐like packing. In the [MBi6I12] cuboctahedron the central transition metal atom is octahedrally surrounded by bismuth atoms, and the iodine atoms bridge the edges of the octahedron. The [Bi8Si2] polyhedron is a tetragonal antiprism of bismuth atoms of which square faces are capped by silicon atoms. Based on crystal chemistry and band structure calculations the compounds may be formulated as cluster salts [Bi8Si2]3+[MBi6I12]3–. Measurements of the electrical conductivity showed that Bi14Si2IrI12 is a semiconductor with a band gap of about 0.1 eV. A single unpaired electron out of 1903 electrons per formula causes paramagnetic behaviour that is superposed by strong diamagnetic contributions.  相似文献   

15.
Syntheses and Structures of Magnesium Complexes with α, ω‐Dicarboxylato Ligands; Dicarboxylate = Succinate, Glutarate, and Suberate Crystals of (Tetraaqua)(succinato)magnesium ( 1 ), (Tetraaqua)(glutarato)magnesium ( 2 ) und (Triaqua)(suberato)magnesium ( 3 ) were obtained by layering an aqueous solution of the respective sodium salt with a solution of MgCl2 in isopropanol. In 1 a chain structure is realized. Mg(H2O)4 units are bridged in trans orientation by α, ω‐bonded succinate groups. 2 contains also chains. Glutarato groups are bonded in a cis fashion to Mg(H2O)4 units. They form bridges by using their two α O atoms. 3 represents a layer structure. The basic structural motives are α, α, ω‐bonded suberate, and fac‐Mg(H2O)3 units. All three structures contain efficient H bridging systems. The connection between the symmetry of the polymeric groups (chains or layer) and the symmetry of the underlying space groups is discussed. 1 : Space group P21/c, Z = 4, lattice constants at 20 °C: a = 7.441(2), b = 14.827(2), c = 7.771(2) Å; β = 99.77(3)°, R1 = 0.052. 2 : Space group C2/c, Z = 8, lattice constants at 20 °C: a = 12.867(2), b = 7.109(1), c = 21.683(3) Å; β = 107.33(2)°; R1 = 0.032. 3 : Space group P21/a, Z = 4, lattice constants at 20 °C: a = 9.174(2), b = 8.071(2), c = 15.960(3) Å; β = 104.29(2)°; R1 = 0.052.  相似文献   

16.
Caesiumchloropalladate(II)‐hydrates – Two New Compounds with Condensed [Pd2Cl6] Groups We were able to synthesize two caesiumchloropalladate(II)‐hydrates in the CsCl/PdCl2/H2O system by hydrothermal methods. Both compounds show combination of monomeric and dimeric Pd–Cl groups. We characterized the crystal structures by single‐crystal X‐ray diffraction. Cs6Pd5Cl16 · 2 H2O ( I ) crystallizes triclinic in space group type P1 (Nr. 2) with a = 8.972(1) Å, b = 11.359(1) Å, c = 18.168(1) Å, α = 83.61(1)°, β = 76.98(1)°, γ = 76.39(1)° and Z = 2, Cs12Pd9Cl30 · 2 H2O ( II ) monoclinic, space group type C2/m (No. 12) with a = 19.952(1) Å, b = 14.428(1) Å, c = 14.411(1) Å, β = 125.29(1)°, and Z = 2.  相似文献   

17.
Single crystals of α‐ and β‐Mg2[(UO2)3(SeO4)5](H2O)16 have been synthesized by evaporation from an aqueous solution of the ionic components. The structure of α‐Mg2[(UO2)3(SeO4)5](H2O)16 (monoclinic, C2/c, a = 19.544(3), b = 10.4783(11), c = 18.020(3) Å, β = 91.352(12)°, V = 3689.3(9) Å3) has been solved by direct methods and refined to R1 = 0.048 on the basis of 4338 unique observed reflections. The structure of β‐Mg2[(UO2)3(SeO4)5](H2O)16 (orthorhombic, Pbcm, a = 10.3807(7), b = 22.2341(19), c = 33.739(5) Å, V = 7787.2(14) Å3) has been solved by direct methods and refined to R1 = 0.107 on the basis of 3621 unique observed reflections. The structures of α‐ and β‐Mg2[(UO2)3(SeO4)5](H2O)16 are based upon sheets with the chemical composition [(UO2)3(SeO4)5]4‐. The sheets are formed by corner sharing between pentagonal bipyramids [UO7]8‐ and SeO42‐ tetrahedra. In the α‐modification, the [(UO2)3(SeO4)5]4‐ sheets are more or less planar and run parallel to (001). In the structure of the β‐modification, the uranyl selenate sheets are strongly corrugated and oriented parallel to (010). The [Mg(H2O)6]2+ polyhedra reside in the interlayers and provide three‐dimensional linkage of the uranyl selenate sheets via hydrogen bonding. In addition to H2O groups attached to Mg2+ cations, both structures also contain H2O molecules that are not bonded to any cation. The [(UO2)3(SeO4)5]4‐ sheets in the structures of α‐ and β‐Mg2[(UO2)3(SeO4)5](H2O)16 represent two different structural isomers. The sequences of the orientations of the tetrahedra within the sheets can be described by their orientational matrices with their shortened forms ( ddudd □ /uu □ uud ) and ( dd □ dd □ uu □ uu □ /uuduumdduddm ) for α‐ and β‐Mg2[(UO2)3(SeO4)5](H2O)16, respectively. A short review on the isomerism of [(UO2)3(TO4)5]4‐ sheets (T = S, Cr, Se, Mo) is given.  相似文献   

18.
About RhSCl5 — a Hexameric, Molecular Rhodium(III) Complex with SCl2 Ligands Needle‐shaped red crystals of RhSCl5 were obtained by reaction of Rh metall or RhI3 with SCl2 in a closed silica ampoule. In the monoclinic crystal structure the Rh atoms are octahedrally coordinated by 5 Cl atoms and a SCl2 ligand. In each case six RhCl5(SCl2) groups are connected with each other by two common edges of Cl atoms to form hexameric molecules [RhCl3(SCl2)]6. In the pseudohexagonal unit cell (monoclinic, space group C2/c, a = 26.215(5) Å, b = 6.7750(10) Å, c = 26.868(5) Å, β = 119.06(3)°, Z = 4) the molecules are stacked in columns and form a hexagonal rod package.  相似文献   

19.
Summary The so far unknown compound Ba7Ir6O19 was prepared by long time solid state reactions using a flux of BaCl2. X-ray single crystal work lead to the space group C 2h 3 —C2/m;a=14.913;b=5.778;c=10.979 Å; =99.58°;Z=2. It crystallizes with a new structure type characterized by three face-shared octahedra. The Ir3O12-groups build up a threedimensional network with an incorporated Ba/O-frame.
  相似文献   

20.
Ga8Ir4B – a Gallium Iridium Boride with isolated, nearly square planar Ir4B Groups in a Structure derived from the CaF2 Type The new compound Ga8Ir4B (tetragonal, I41/acd, a = 853.69(2) pm, c = 2 105.69(6) pm, Z = 8, 614 reflections, 31 parameters, R = 0.034) was prepared by reaction of the elements at 1 100°C. The structure is derived from the CaF2 type. It contains isolated Ir4B groups with boron in an unusual, nearly square planar coordination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号