首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The complex [Cu(HGLYO)2(bipy)] ( I ) and two new copper(II) coordination polymers with the formulas {[Cu(GLYO)1‐x(ox)x(bipy)]·2.5H2O}n [GLYO = glycolato dianion, ox = oxalato dianion, bipy = 2, 2′‐bipyridine, x = 0.56 (in II ) or 0.71 (in III )] were synthesized using copper(II) glycolate as starting material and were characterized by IR, UV‐Vis and EPR spectrometry, by magnetic measurements ( II and III ), and by single‐crystal X‐ray diffractometry. Both II and III crystallized as one‐dimensional polymers composed of Cu2O2‐centred dimers with a Cu‐Cu distance of 3.282(1)Å (mean of II and III ) that are linked by Cu2(OCO)2 rings with a Cu‐Cu distance of 5.237(1)Å (mean of II and III ), both dianions acting as (μ‐1, 1, 2, 3) three‐way bridges connecting the two copper atoms of one dimer with one copper atom of a neighbouring dimer. Each copper atom is coordinated tetragonally in a CuN2O4 chromophore. In the mononuclear complex I the copper atom has a tetragonally distorted octahedral environment.  相似文献   

2.
In bis­[1‐(3‐pyridyl)butane‐1,3‐dionato]copper(II) (the Cu atom occupies a centre of inversion), [Cu(C9H8NO2)2], (I), and bis­[1‐(4‐pyridyl)butane‐1,3‐dionato]copper(II) methanol solvate, [Cu(C9H8NO2)2]·CH3OH, (II), the O,O′‐chelating diketonate ligands support square‐planar coordination of the metal ions [Cu—O = 1.948 (1)–1.965 (1) Å]. Weaker Cu⋯N inter­actions [2.405 (2)–2.499 (2) Å], at both axial sides, occur between symmetry‐related bis­(1‐pyridylbutane‐1,3‐dion­ato)copper(II) mol­ecules. This causes their self‐organization into two‐dimensional square‐grid frameworks, with uniform [6.48 Å for (I)] or alternating [4.72 and 6.66 Å for (II)] inter­layer separations. Guest methanol mol­ecules in (II) reside between the distal layers and form weak hydrogen bonds to coordinated O atoms [O⋯O = 3.018 (4) Å].  相似文献   

3.
In the title complex, poly[copper(II)‐di‐μ‐5‐carboxy‐1H‐imidazole‐4‐carboxyl­ato], [Cu(C5H3N2O4)2]n or [Cu(H2Imda)2]n, each imidazole moiety is bonded to the Cu atom via O and N atoms to give a square‐planar coordination [Cu—O = 2.014 (2) and 2.016 (2) Å, and Cu—N = 1.982 (3) and 1.992 (2) Å]. The distorted square‐pyramidal geometry at the Cu atom results from coordination to an adjacent O atom [Cu—O = 2.305 (2) Å], which generates zigzag chains. There is a sixth, weaker, octahedral coordination to the Cu atom from an inversion‐related O atom [Cu—O = 3.090 (2) Å], which links the chains into sheets in the (100) plane. Imidazole moieties in the sheets are linked in the [100] direction by pairs of N—H⋯O and C—H⋯O hydrogen bonds, thus generating a three‐dimensional network.  相似文献   

4.
A new two-dimensional polymeric copper(II) complex, [Cu2(heae)(N3)2] n , where heae stands for the dianion of N,N′-bis(N-hydroxyethylaminoethyl)oxamide, has been synthesized and characterized by elemental analysis, molar conductivity measurement, IR, electronic spectral studies and single-crystal X-ray diffraction. The compound crystallizes in the monoclinic system, P21/c space group with crystallographic data: a = 9.1588(18) Å, b = 6.6238(13) Å, c = 14.602(3) Å and Z = 2. The X-ray analysis reveals a two-dimensional copper(II) polymeric coordination network constructed by bis-tridentate chelated [Cu(trans-heae)Cu]2+ building blocks and end-on azido ligands. The environment around the copper(II) atom can be described as a square-based pyramid. The azido bridge is very asymmetric with one Cu–N bond distance short and the other long. The Cu ··· Cu separations through μ-trans-oxamidate and μ-azido bridges are 5.2996(13) Å and 4.2464(7) Å, respectively. The copper(II) complex is a polymer in the solid state, whereas in solution it exists as discrete neutral binuclear copper(II) species. Coordination mode of the azide in solution is proved by electronic spectra. The DNA-binding properties of the binuclear copper(II) species were investigated by emission spectral and electrochemical techniques, indicating the binuclear copper(II) complex binds to HS-DNA via a groove mode.  相似文献   

5.
The CuII complex bis[hydroxybis(pyridin‐2‐yl)methanesulfonato‐κ3N,O,N′]copper(II) hexahydrate, [Cu(C11H9N2O4S)2]·6H2O, (I), crystallizes in the space group P, compared with P21/c for the anhydrous CoII analogue bis[hydroxybis(pyridin‐2‐yl)methanesulfonato‐κ3N,O,N′]cobalt(II), [Co(C11H9N2O4S)2], (II). However, both molecules sit on a crystallographic inversion centre and are thus very similar in appearance. Jahn–Teller elongation of the Cu—O bonds [2.347 (3) Å in (I) and 2.064 (2) Å in (II)] influences the S—O bond lengths, which are all around 1.455 (3) Å in (I) and 1.436 (2)–1.473 (2) Å in (II).  相似文献   

6.
A new assembly [Cu2(sac)2(μ‐dmea)2(μ‐H2O)]n (sac = saccharinate and Hdmea = 2‐dimethylaminoethanol) has been synthesized and characterized by elemental analysis, IR spectroscopy, thermal analysis and single crystal X‐ray diffraction. The complex crystallizes in the monoclinic space group C2/c and consists of dinuclear modules of [Cu2(sac)2(dmea)2]. The sac ligand is N‐coordinated, while the dmea ligand is in the deprotanated form by losing the ethanol hydrogen atom and acts as a bidentate donor through the alkoxo group and N atom. The alkoxo group also serves as a bridge between two copper(II) ions, leading to an intra‐dimer Cu···Cu separation of 3.0229(7) Å. The dimeric units are bridged by aqua ligands to generate a one‐dimensional water‐bridged helical chain, in which the copper(II) ions exhibit a distorted square‐pyramidal CuN2O3 coordination. The Cu–Cu distance in the chain separated by the bridging aqua ligands is 5.297Å. The polymeric chains are further linked by π(sac)···π(sac) and C–H···π(sac) interactions into a two‐dimensional supramolecular network.  相似文献   

7.
The copper sulfide mineral flotation collector, N‐n‐butyl‐N′‐ethoxycarbonyl‐thiourea (H2bectu), and the 1:1 hexameric copper(I) thioureate complex, [Cu(Hbectu)]6, have been characterized by single crystal X‐ray diffraction. H2bectu crystallizes in the triclinic space group with a = 5.2754(4), b = 9.0042(7), c = 12.6030(9) Å, α = 80.528(6), β = 90.173(6), γ = 76.472(7)°. An intramolecular N‐H···O hydrogen bond between the thioamide proton and carbonyl oxygen forms a planar six‐membered ring in the central core of the molecule with C=O, C=S and C‐N bond lengths in accord with those reported for other N‐alkyl/aryl‐N′‐acyl‐thiourea compounds. [Cu(Hbectu)]6 crystallizes in the monoclinic space group C2/c with a = 23.269(5), b = 13.243(4), c = 23.037(7) Å, β = 91.81(2)° as discrete hexameric clusters disposed about a crystallographic centre of symmetry with a Cu6S6 core consisting of two Cu3S3 chair‐shaped rings linked by coordination of the deprotonated amide nitrogen atom to a copper atom in the adjacent ring. The six ligands assemble as a paddlewheel structure with the ethoxy and n‐butyl substituents packing in an alternating head to tail arrangement. Temperature dependent solution 1H NMR spectroscopic studies show that the hexameric structure of the complex is maintained in solution.  相似文献   

8.
A complex with eight‐coordinate lead(II ) atom and saccharinate (sac) and 2‐aminomethylpyridine ligands was characterized by IR, elemental analysis and X‐ray crystallography. The lead(II ) complex crystallizes in the monoclinic crystal system with space group P21/c. The single crystal X‐ray analysis shows that the complex is a coordination polymer, [Pb(ampy)(μ‐sac)2]n, in which the lead(II ) ions have a highly distorted bicapped trigonal antiprism coordination. Lead(II ) ions are bridged by carboxyl groups of sac forming one‐dimensional linear chains, running parallel to the a axis. The intrachain Pb···Pb distances are 4.4490(3) and 4.4679(3)Å. The individual chains are connected by N—H···Osulfonyl and Campy—H···Osulfonyl type hydrogen bonds, resulting in a three‐dimensional network. The sac ligand acts as bidentate and bridging ligand, while ampy behaves as an N, N′ donor. The IR spectra of the lead(II ) complex are discussed in detail.  相似文献   

9.
The stoichiometric reaction of copper(II) hydroxycarbonate, iminodiacetic acid (H2IDA = HN(CH2CO2H)2) and α‐picolinamide (pya) in water yields crystalline samples of (α‐picolinamide)(iminodiacetato)copper(II) dihydrate, [Cu(IDA)(pya)] · 2 H2O ( 1 ). The compound was characterised by thermal (TG analysis with FT‐IR study of the evolved gasses), spectral (IR, electronic and ESR spectra), magnetic and single crystal X‐ray diffraction methods. It crystallises in the triclinic system, space group P1, a = 8.8737(4), b = 10.23203(5), c = 15.7167(11) Å, α = 77.61(1)°, β = 103.89(1)°, γ = 80.32(1)°, Z = 4, final R1 = 0.056. The asymmetric unit contains two crystallographic independent molecules but chemically very similar ones. The CuII atom exhibits a square base pyramidal coordination (type 4 + 1). pya acts as N,O‐bidentate ligand supplying two among the four closest donor atoms of the metal [averaged bond distances (Å): Cu–N = 1.982(2), Cu–O(amide) = 1.972(2)]. IDA plays a N,O,O′‐terdentate chelating role [averaged bond distances (Å): Cu–N = 2.004(3), Cu–O = 1.941(2) and Cu–O = 2.242(2)]. The coordinating behaviour of pya in 1 is discussed on the basis of its N,O‐bidentate chelating role and the preference of the ‘Cu‐iminodiacetato' moiety [Cu(IDA)] to link the N‐heterocyclic donor of pya in trans versus the Cu–N(IDA) bond. Consistently the ligand pya is able to impose a fac‐chelating configuration to IDA one around the copper(II) as previously has been reported to mixed‐ligand complexes having a 1/1/2 CuII/IDA/N(heterocyclic) donor ratio or a closely related 1/1/1/1 CuII/IDA/N(heterocyclic)/N(aliphatic) one.  相似文献   

10.
Abstract

The title compound [Cu3Br4C28H28N4O2] is a type of polymeric three-centre octahedral-trigonal planar coordination complex. The copper(II) atom located at a centre of symmetry is six-coordinate with two bidentate (N3, O1) ligands of acetone-1-naphthoylhydrazone forming the equatorial plane and two bromine ions in axial positions (Cul-Brl = 2.946(1)Å). The ligands are in trans positions. The Cu(I) atoms are in trigonal planar coordination by two bridging Br? ions (Cu2-Br2 = 2.412(1)Å, Cu2-Br2? = 2.407(2)Å) which connect two Cu(I) atoms and a third bromine ion shared with the octahedral Cu(II) ion (Cu2-Br1 = 2.304(1)Å). The arrangement forms an infinite chain along the b axis.  相似文献   

11.
The β‐diketone 3‐(4‐cyano­phenyl)­pentane‐2,4‐dione crystallizes as the enol tautomer 4‐(2‐hydroxy‐4‐oxopent‐2‐en‐3‐yl)­benzo­nitrile, C12H11NO2, (I), with an intramolecular O—H⋯O hydrogen bond [O⋯O = 2.456 (2) Å]. Reaction of (I) with copper acetate monohydrate in the presence of triethyl­amine leads to the formation of the copper(II) complexbis­[3‐(4‐cyano­phenyl)­pentane‐2,4‐dionato‐κ2O,O]copper(II), [Cu(C12H10NO2)2], (II). In the structure of (II), the Cu atom is coordinated by four β‐diketonate O atoms in a slightly distorted square‐planar geometry, with Cu—O distances in the range 1.8946 (11)–1.9092 (11) Å. The nitrile moieties in (II) make it a candidate for reaction with other metal ions to produce supramolecular structures.  相似文献   

12.
The title compound, di­bromo(3‐hydroxy‐5‐hydroxy­methyl‐2‐methyl‐4‐pyridine­carbox­aldehyde semicarbazone‐κ3N1,O3,O3′)copper(II), [CuBr2(C9H12N4O3)], consists of discrete complex units with the tridentate pyridoxal semicarbazone ligand as a zwitterion in an almost planar configuration. The CuII ions are in a distorted square‐pyramidal coordination, with the equatorial Br atom at a distance of 2.4017 (6) Å and the apical Br atom at a distance of 2.6860 (6) Å.  相似文献   

13.
The crystal structure of the title compound, μ‐2‐hydroxy­butane­dioato‐1κ2O4,O4′:2κ3O1,O2,O4‐nitrato‐2κO‐tris­(1,10‐phen­anthroline)‐1κ4N,N′;2κ2N,N′‐dicopper(II) nitrate tetra­hydrate, [Cu2(C4H3O5)(NO3)(C12H8N2)3](NO3)·4H2O, contains an unsymmetrical dinuclear copper complex with Cu(phen)2 and Cu(phen)(NO3) moieties (phen is 1,10‐phenanthroline) bridged by a malate (2‐hydroxy­butane­dioate) ligand, which acts as a double‐bridging and tetra­dentate ligand. As a result of this double‐bridging action, especially the direct coordination of the O atom of one carboxyl­ate group of malate to the two Cu atoms, the Cu⋯Cu distance is only 4.199 (1) Å and the two phen planes are roughly parallel [the shortest inter­planar distance is 3.28 (1) Å], exhibiting an obvious intra­molecular π–π stacking inter­action.  相似文献   

14.
In trans‐bis(5‐n‐butyl­pyridine‐2‐carboxyl­ato‐κ2N,O)­bis­(methanol‐κO)copper(II), [Cu(C10H12NO2)2(CH4O)2], the Cu atom lies on a centre of symmetry and has a distorted octahedral coordination. The Cu—O(methanol) bond length in the axial direction is 2.596 (3) Å, which is much longer than the Cu—­O(carboxylate) and Cu—N distances in the equatorial plane [1.952 (2) and 1.977 (2) Å, respectively]. In mer‐tris(5‐n‐bu­tyl­pyridine‐2‐carboxyl­ato‐κ2N,O)­iron(III), [Fe(C10H12NO2)3], the Fe atom also has a distorted octahedral geometry, with Fe—O and Fe—N bond‐length ranges of 1.949 (4)–1.970 (4) and 2.116 (5)–2.161 (5) Å, respectively. Both crystals are stabilized by stacking interactions of the 5‐n‐butyl­pyridine‐2‐carboxyl­ate ligand, although hydrogen bonds also contribute to the stabilization of the copper(II) complex.  相似文献   

15.
The title compounds, {4,4′‐di­bromo‐2,2′‐[1,3‐propane­diyl­bis(nitrilo­methyl­idyne‐N)]­diphenolato‐O,O′}nickel(II), [Ni(C17­H14­Br2­N2O2)], and {4,4′‐di­chloro‐2,2′‐[1,3‐pro­pane­diyl­bis­(ni­trilo­methyl­idyne‐N)]­di­phen­ol­ato‐O,O′}­copper(II), [Cu­(C17­H14­Cl2­N2O2)], lie on crystallographic twofold axes. In both structures, the metal coordination sphere is a tetrahedrally distorted square plane formed by the four‐coordinate N2O2 donor set of the Schiff base imine–phenol ligands. In the Ni compound, the Ni—O and Ni—N distances are 1.908 (3) and 1.959 (4) Å, respectively, while in the Cu compound, the Cu—O and Cu—N distances are 1.907 (2) and 1.960 (2) Å, respectively. The two Schiff base moieties, which themselves are nearly planar, are inclined at an angle of 29.26 (7)° for the Ni compound and 29.26 (5)° for the Cu compound.  相似文献   

16.
4,4′‐(p‐Phenylene)bipyridazine, C14H10N4, (I), and the coordination compounds catena‐poly[[dibromidocopper(II)]‐μ‐4,4′‐(p‐phenylene)bipyridazine‐κ2N2:N2′], [CuBr2(C14H10N4)]n, (II), and catena‐poly[[[tetrakis(μ‐acetato‐κ2O:O′)dicopper(II)]‐μ‐4,4′‐(p‐phenylene)bipyridazine‐κ2N1:N1′] chloroform disolvate], {[Cu2(C2H3O2)4(C14H10N4)]·2CHCl3}n, (III), contain a new extended bitopic ligand. The combination of the p‐phenylene spacer and the electron‐deficient pyridazine rings precludes C—H...π interactions between the lengthy aromatic molecules, which could be suited for the synthesis of open‐framework coordination polymers. In (I), the molecules are situated across a center of inversion and display a set of very weak intermolecular C—H...N hydrogen bonds [3.399 (3) and 3.608 (2) Å]. In (II) and (III), the ligand molecules are situated across a center of inversion and act as N2,N2′‐bidentate [in (II)] and N1,N1′‐bidentate [in (III)] long‐distance bridges between the metal ions, leading to the formation of coordination chains [Cu—N = 2.005 (3) Å in (II) and 2.199 (2) Å in (III)]. In (II), the copper ion lies on a center of inversion and adopts CuN2Br4 (4+2)‐coordination involving two long axial Cu—Br bonds [3.2421 (4) Å]. In (III), the copper ion has a tetragonal pyramidal CuO4N environment. The uncoordinated pyridazine N atom and two acetate O atoms provide a multiple acceptor site for accommodation of a chloroform solvent molecule by trifurcated hydrogen bonding [C—H...O(N) = 3.298 (5)–3.541 (4) Å].  相似文献   

17.
The crystal structures of two (hexafluoroacetylacetonato)copper(II) complexes with 3-imidazoline nitroxide radicals, [Cu(C5HF6O2)2]3 (C14H19N2O)2 (I) and [Cu(C5HF6O2)2]3 (C13H17N2O3)2 (II), have been determined. The compounds are triclinic (PI, Z=1) with a=8.730(2), b=10.357(2), c=21.996(5) Å, α=103.24(2), β=94.03(2), γ=95.04(2)0, V=1920(1) Å3 for I and a=8.679(2), b=14.769(4), c=15.368(4) Å, α=85.58(2), β=96.25(1), γ=104.60(1)0, V=1893(1) Å3 for II. Complexes I and II are molecular. The trinuclear molecules are centrosymmetric relative to the Cu(1) atom. The coordination polyhedron of Cu(1) is a square bipyramid formed by the O atoms of the hfac anions and nitroxide radicals (average Cu?Ohfac 1.92(1) for I and 1.93(1) Å for II; Cu?ON?O 2.47(1) for I and 2.56(1) Å for II). The coordination polyhedron of Cu(2) is a trigonal bipyramid formed by the O atoms of the hfac anions (Cu?Ohfac 1.91(1)–2.12(1) for I and 1.91(1)–2.09(1) Å for II) and an imine N atom of the radical (Cu(2)?N(2) 2.00(1) for I and 2.03(1) Å for II). The molecules are linked by van der Waals forces.  相似文献   

18.
The title compound, catena‐poly[­[bromo­copper(II)]‐μ‐(quin­olin‐8‐yl­oxy)­acetato‐κ4N,O,O′:O′′], [CuBr(C11H8NO3)]n, is a novel carboxyl­ate‐bridged one‐dimensional helical copper(II) polymer. The metal ion exhibits an approximately square‐pyramidal CuBrNO3 coordination environment, with the three donor atoms of the ligand and the bromide ion occupying the basal positions, and an O atom belonging to the carboxyl­ate group of an adjacent mol­ecule in the apical site. Carboxyl­ate groups are mutually cis oriented, and each antianti carboxyl­ate group bridges two copper(II) ions via one apical and one basal position [Cu⋯Cu = 5.677 (1) Å], resulting in the formation of a helical chain along the crystallographic b axis.  相似文献   

19.
A tetranuclear copper(II) complex, [Cu2L]2(ClO4)2 · 4H2O (1), where H3L = N,N′-bis(4-(3′-formyl-5′-chlorosalicyclidene)iminoethyl)-4-chloro-2,6-bimethyliminophenol, has been synthesized and structurally characterized by ES-MS, IR and X-ray crystallography. The complex is a dimer of two dinuclear copper(II) acylic enantiomorph subunits ([Cu2L]ClO4 · 2H2O), held together by π–π, coordination and hydrogen bond interactions. The Cu–Cu separation in each subunit, bridged by one phenoxide, is 3.228 Å, and the shortest distance of Cu–Cu between the two subunits is 3.252 Å. There are two crystallographically unique copper(II) environments, one (Cu1) is square-based pyramidal with O3N2 donor set, another (Cu2) square planar with O2N2 donor set. The cyclic voltammogram of the complex shows that it undergoes two stepwise reduction processes, E pc = ?0.707 and ?0.850 V, respectively. Magnetic measurements in the 2–300 K range indicate strong antiferromagnetic interactions between Cu(II) ions in each subunit with the exchange constant J = ?211(2) cm?1. The observation has been rationalized on the basis of the effective magnetic pathway.  相似文献   

20.
Reaction of bis(hexafluoroacetylacetonato)copper(II) hydrate with 1,2,4-triazine (tz) in dichloromethane yields pentakis[bis(hexafluoroacetylacetonato)triazinecopper(II)] [Cu(hfac)2(tz)]5 (hfac = hexafluoroacetylacetonate) (1). The complex crystallizes in the triclinic space group P-1, with cell parameters a = 11.4124(5), b = 13.3405(5), c = 16.1794(7) Å, α = 93.360(2)°, β = 108.700(2)°, γ = 100.293(2)° at 120(1) K. In the complex, the copper(II) ions show three types of coordination polyhedra: square planar, square pyramidal, and octahedral (4 + 2). The tz ligand also shows different coordination modes (bridging and monodentate). In addition, disorder is observed in the triazine molecule, either through non-crystallographic two-fold rotation about the longitudinal N,N-axis, or with respect to a crystallographic center of symmetry. The crystal structure of 1 consists of alternating trimers and dimers. The weak coordination of the tz molecules results in negligible magnetic exchange through the ring.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号