首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
NbOI3 was obtained from a reaction of Nb2O5, Nb, and I2. Single crystals free from disorder were a by‐product from a reaction with additional CsI. The monoclinic crystal structure (C2, a = 14.624(3) Å, b = 3.9905(8) Å, c = 12.602(3) Å, β = 120.4(3)°, Z = 4, R1(F) = 0.0368, wR2(F2) = 0.0804) represents a new structure type which is built up by distorted octahedral NbI4O2 with unequal O‐atoms in trans‐position. The octahedra are linked to dimers by a common edge of iodine atoms and to double chains by the apical oxygen atoms. A non‐centrosymmetric structure results because the short Nb–O distances point to the same direction and the polar double chains are parallel. The crystal structure of NbOBr3 (NbOCl3‐type, , a = 11.635(6) Å, c = 3.953(2) Å, R1(F) = 0.082, wR2(F2) = 0.174) shows the same polar double chains but the dimeric units Nb2Br6O2 are orthogonal.  相似文献   

2.
A new phase, BaNb6.3(1)Ti3.6(1)O16, has been synthesised. Electron diffraction studies indicate an hexagonal substructure with unit cell parameters a ≈ 8.9 Å and c ≈ 9.5 Å. In some of the ED patterns superstructure reflections are present, indicating a supercell with a = √3 · asub and c = csub. However, X‐ray single‐crystal diffraction studies of a crystallite yielding reflections corresponding to the supercell revealed it to be monoclinic, with the unit cell parameters a = 26.811(2) Å, b = 15.4798(2) Å, c = 9.414(2) Å, β = γ = 90° and α = 90.0(3)°. The average crystal structure was refined, using the subcell with a = 8.937(2) Å, b = 15.479(2) Å, c = 9.414(2) Å, β = γ = 90° and α = 90.0(3)°, space group Cm11, and Z = 4, to RI = 3.24% and RwI = 3.44%. The structure can be described as an hexagonal close packing layers of Nb6 octahedra, Ba, and O atoms (A1, A2) and layers of O atoms (B1, B2), appearing in the packing sequence: A1B1A2B2. The Nb6 octahedra are found in isolated Nb6O12O6 clusters, and the Ti atoms in Ti3O13 and Ti3O10 units in octahedral and tetrahedral voids formed by O atoms, respectively. The Ti positions were found to be only partly occupied. Microanalysis indicates that some Nb atoms are located in the Ti3 triangles. A model is presented that interprets these not fully occupied Ti3 triangles as a result of a superimposing of three different structures. Two of these consist of two fused Ti3O13 units, forming an Ti6O19 unit, and a Ti3O10 unit, while the third consists of alternating Ti3O13 units.  相似文献   

3.
The orange cerium‐niobium‐oxysulfide Ce3NbO4S3 was synthesized by the solid state reaction of CeO2, Ce‐metal, Nb2O5 and sulfur at 1100 °C. The crystal structure has orthorhombic symmetry (space group Pbam, a = 7.055(1), b = 14.571(3), c = 7.627(2) Å, Z = 4) and contains isolated [Nb2S4O6]10− ions consisting of two strongly distorted, edge sharing NbO3SS2/2 octahedra. Niobium is connected to three oxygen and three sulfur atoms. The cerium atoms are eightfold coordinated by oxygen and sulfur atoms. Certain oxygen and sulfur atoms are not connected to niobium, but exclusively surrounded by cerium. By connecting these cation polyhedra, one recognizes layers of polycations perpendicular to the c‐axis. The magnetic susceptibility shows Curie‐Weiss behavior with an effective magnetic moment μeff = 2.63(1) μB/Ce in agreement with Ce3+. A Weiss‐constant θp = –12(1) K indicates weak antiferromagnetic coupling. No magnetic ordering was detected above 2 K.  相似文献   

4.
The Ladder Structure of LiNb6Cl19 LiNb6Cl19 was obtained from a solid state reaction of Nb powder, NbCl5, and Li2C2 at 530 °C. The structure was refined by single‐crystal X‐ray diffraction (space group Pmma (No. 51), Z = 2, a = 2814.6(1) pm, b = 687.35(5) pm, c = 641.39(3) pm). It contains edge and face bridging [NbCl6] octahedra forming the motif of a ladder. The parallel alignment of ladders yields a one‐dimensional structure, with lithium ions occupying voids. Each ladder combines characteristic fragments from the niobium chloride structures NbCl4, A3Nb2Cl9 (A = Rb, Cs), and Nb3Cl8. The arrangement of niobium atoms in LiNb6Cl19 appears to be similar with trigonal niobium clusters obtained in the structure of Nb3Cl8. The electronic structures of niobium clusters in Nb3Cl8 and LiNb6Cl19 are compared with each other.  相似文献   

5.
Na(V3?xNbx)Nb6O14 — A Novel Oxoniobate with [Nb6O12] and [M2O9] Clusters Goldcolored single crystals and black powders of Na(V3?xNbx)Nb6O14 have been prepared by heating a pellet containing a mixture of NaNbO3, NbO2, NbO, VO2 and NaF or Na2B4O7 (as mineralizers) at 900°C in a sealed gold capsule. The analytically determined Nb : V ratio is 5 : 1 and means that x is about 1.5. The compound crystallizes in P63/m with a = 603.4(1), c = 1807.9(5) pm and Z = 3. The crystal structure can be described in terms of common close packing of sheets of O and Na atoms together with Nb6 octahedra. Characteristic building groups of the new structure type are [Nb6O12] clusters, [M2O9] clusters and NbO5 bipyramids. V atoms are distributed only on the positions of the Nb atoms within the trigonal bipyramids or the [M2O9] clusters. The [Nb6O12] clusters show characteristicaly short distances dNb-Nb = 279.4 and 281.3 pm, respectively. In the [M2O9] units, which are built from two MO6 octahedra that share a common face, V or Nb atoms form M–M dumbbells with dM–M = 255.9 pm. The electronic structure is discussed using Extended Hückel calculations.  相似文献   

6.
The Network Structure of RbNb4Cl11 RbNb4Cl11 was obtained by solid state reaction of Nb powder, NbCl5 and RbCl at 575 °C. The structure was examined by powder and single‐crystal X‐ray diffraction. RbNb4Cl11 crystallizes with the space group Pmma (No. 51), Z = 2 , a = 1621.1(1) pm, b = 690.22(4) pm, c = 657.93(3) pm, R1 = 0.0257 and wR2 = 0.0470, being isotypic with CsNb4Cl11. The structure contains edge bridging and face sharing [NbCl6] octahedra forming the motif of a wave‐like net. The net‐planes are stacked parallel to the c axis direction. Rubidium ions occupy voids between the net openings of adjacent layers. The electronic properties of Nb4‐clusters in the structure are being discussed.  相似文献   

7.
Na3Al2Nb34O64 and Na (Si, Nb) Nb10O19. Cluster Compounds with Isolated Nb6-Octahedra Hexagonal ormolu coloured plates of the new compounds Na3Al2Nb34O64 ( I ) and Na(Si, Nb)Nb10O19 ( II ) were prepared by heating pellets of NaF, Al2O3, NbO2 and NbO (3:1:8:2) and NaF, NbO2 and NbO (1:4:2), respectively, at approx. 850°C. I was contained in a sealed gold capsule, II in a silica tube. The Si incorporated in II originates from the container material. Both compounds crystallize in R 3 , I with a = 784.4(1), c = 7065(1) pm, Z = 3 and II with a = 784.1(1), c = 4221.8(5) pm, Z = 6. I and II represent new structure types. They contain the same characteristic structural units, namely discrete Nb6O12 clusters (dNb–Nb = 283 ± 4 pm) and Nb2O10 units with Nb–Nb dumbells (dNb–Nb ≈? 269 pm) in edgesharing coordination octahedra. In addition NbO6 octahedra containing Nb in the oxidation state + 5 and NaO12 cube-octahedra occur in both compounds besides AlO4 and SiO4 tetrahedra in I and II , respectively. The structures can be described in terms of a common closepacking of O and Na atoms together with Nb6 octahedra.  相似文献   

8.
Bis(disulfido)bridged NbIV cluster oxalate complexes [Nb2(S2)2(C2O4)4]4– were prepared by ligand substitution reaction from the aqua ion [Nb2(μ‐S2)2(H2O)8]4+ and isolated as K4[Nb2(S2)2(C2O4)4] · 6 H2O ( 1 ), (NH4)6[Nb2(S2)2(C2O4)4](C2O4) ( 2 ) and Cs4[Nb2(S2)2(C2O4)4] · 4 H2O ( 3 ). The crystal structures of 1 and 2 were determined. The crystals of 1 belong to the space group P1, a = 720.94(7) pm, b = 983.64(10) pm, c = 1071.45(10) pm, α = 109.812(1)°, β = 91.586(2)°, γ = 105.257(2)°. The crystals of 2 are monoclinic, space group C2/c, a = 1567.9(2) pm, b = 1906.6(3) pm, c = 3000.9(4) pm, β = 95.502(2)°. The packing in 2 shows alternating layers of cluster anions and of ammonium/uncoordinated oxalates perpendicular to the [1 0 1] direction. Vibration spectra, electrochemistry and thermogravimetric properties of the complexes are also discussed.  相似文献   

9.
CuInOVO4 – Single Crystals of a Copper(II) Indium Oxide Vanadate by Oxidation of Cu/In/V Alloys Red‐brown crystals of the new compound CuInOVO4 (monoclinic, P21/c, a = 879.3(2) pm, b = 615.42(6) pm, c = 1526.2(2) pm, β = 106.69(2)?, Z = 4) were prepared by the reaction of Cu/In/V alloys with oxygen. The investigated crystals were twins by pseudo‐merohedry with a (001) twinning plane. The structure contains isolated Cu4O18‐groups consisting of trans edge sharing CuO6‐octahedra. Interconnection of the groups by [In4O16]‐ribbons running along [010] which are built of edge‐ and corner‐sharing InO6‐octahedra results in the formation of slabs perpendicular to the c‐axis. The slabs are linked to a threedimensional framework by VO43– groups. The structure may be derived from a cubic closest packing of the oxygen atoms with copper and indium atoms in the octahedral and vanadium atoms in the tetrahedral vacancies.  相似文献   

10.
New compounds of the general formula A4[Nb6Cl12(NCS)6](H2O)4 (A = K, Rb, NH4) were synthesized from Nb6Cl14 and ASCN in aqueous solutions. X-ray structure refinements were performed on single-crystal data of the three compounds. They are isotypic and crystallize with the space group P1 (Z = 1) and the lattice parameters: a = 877.9(3) pm, b = 1176.6(3) pm, c = 1187.0(3) pm, α = 114.29(1)°, β = 98.96(2)°, γ = 100.91(2)° for K4[Nb6Cl12(NCS)6](H2O)4 ( 1 ); a = 887.6(3) pm, b = 1184.0(4) pm, c = 1195.4(4) pm, α = 114.95(2)°, β = 98.84(2)°, γ = 101.31(2)° for Rb4[Nb6Cl12(NCS)6](H2O)4 ( 2 ) and a = 886.0(4) pm, b = 1181.1(6) pm, c = 1183.9(6) pm, α = 114.49(2)°, β = 99.48(3)°, γ = 101.53(1)° for (NH4)4[Nb6Cl12(NCS)6](H2O)4 ( 3 ). Each centrosymmetric [Nb6Cl12(NCS)6]4? ion of the isotypic compounds contains six terminal thiocyanate groups being bound to the corners of the octahedral niobium cluster through the nitrogen atoms (dNb? N = 221.5(6)–224.3(6) pm, bond angles Nb? N? C 168.6(5)–176.4(6)°). The [Nb6Cl12(NCS)6]4? ions are linked via A? S and A? Cl interactions with the A cations. Half of the cations occur to be disordered along two crystallographic sites.  相似文献   

11.
Black, needle shaped crystals of NbOBr2 were formed by reduction of NbOBr3 with InBr at 500 °C. It crystallizes isotypically to NbOI2 (monoclinic, space group C2, a = 13.833(4), b = 3.9079(6), c = 7.023(2) Å, β = 105.026(10)°). The structure consists of NbO2Br4 octahedra, which are connected to layers . Nb atoms of edge sharing octahedra form Nb2 pairs with Nb–Nb distances of 3.144(5) Å. Within corner‐sharing octahedra alternating long and short Nb–O bonds are present, causing the polarity of the structure.  相似文献   

12.
Novel Suboxide Clusters [O5Ba18] in the Crystal Structures of Ba21M2O5 (M = Si, Ge) The compounds Ba21M2O5 (M = Si, Ge) crystallize in the cubic system with space group Fd3m, lattice constants 2 038.3(10) pm (Si), 2 039.8(9) pm (Ge) resp. and Z = 8. The crystal structure contains isolated Si/Ge atoms coordinated by barium atoms in an icosahedral arrangement. The oxygen atoms are situated in the centers of barium octahedra, four of which share common faces with an additional central octahedron. The novel clusters [O5Ba18] in principal are related to those in the crystal structures of the binary Cs/Rb suboxides.  相似文献   

13.
The mixed‐valent oxotantalate Eu1.83Ta15O32 was prepared from a compressed mixture of Ta2O5 and the metals in a sealed Ta ampoule at 1400 °C. The crystal structure was determined by means of single crystal X‐ray diffraction: space group R3¯, a = 777.2(6) pm and c = 3523.5(3) pm, Z = 3, 984 symmetrically independent reflections, 83 variables, RF = 0.027 for I > 2σ (I). The structure is isotypic to Ba2Nb15O32. The salient feature is a [Ta(+8/3)6O12iO6a] cluster consisting of an octahedral Ta6 core bonded to 12 edge‐bridging inner and six outer oxygen atoms. The clusters are arranged to slabs which are sandwiched by layers of [Ta(+5)3O13] triple octahedra. Additional Ta(+5) and Eu(+2) atoms provide the cohesion of these structural units. Twelve‐fold coordinated Eu(+2) atoms are situated on a triply degenerate position 33 pm displaced from the threefold axis of symmetry. A depletion of the Eu(+2) site from 6 to 5.5 atoms per unit cell reduces the number of electrons available for Ta‐Ta bonding from 15 to 14.67 electrons per cluster. Between 125 and 320 K Eu1.83Ta15O32 is semi‐conducting with a band gap of 0.23 eV. The course of the magnetization is consistently described with the Brillouin function in terms of a Mmol/(NAμB) versus B/T plot in the temperature range 5 K — 320 K and at magnetic flux densities 0.1 T — 5 T. At moderate flux densities (< 1 T) the magnetic moment agrees fairly well with the expected value of 7.94 μB for free Eu (2+) ions with 4f7 configuration in 8S7/2 ground state. Below 5 K, anisotropic magnetization measurements at flux densities B < 1 T point to an onset of an antiferromagnetic ordering of Eu spins within the layers and an incipient ferromagnetic ordering perpendicular to the layers.  相似文献   

14.
The crystal structure of the known compounds Ln5Re2O12 (Ln = Y, Gd, Dy–Lu) and the new isotypic terbium rhenate Tb5Re2O12 was determined from X‐ray data of a twinned crystal of Ho5Re2O12: B2/m, a = 1236.5(4) pm, b = 748.2(2) pm, c = 563.8(1) pm, γ = 107.73(3)°, Z = 2, R = 0.034 for 379 structure factors and 37 variable parameters. The rhenium atoms (oxidation number +4.5) have octahedral oxygen coordination. These ReO6 octahedra share edges, thus forming infinite strings with alternating short and long Re–Re distances: 243.6(2) and 320.1(2) pm. Of the three holmium positions two are surrounded by seven oxygen atoms and the third one has octahedral oxygen coordination. The crystal structure of Pr3ReO8 was refined from single‐crystal X‐ray data: P21/a, a = 1498.0(2) pm, b = 749.09(8) pm, c = 610.48(9) pm, γ = 110.39(1)°, R = 0.017 for 2082 F values and 110 variable parameters. It is isotypic with a structure first determined for Sm3ReO8. The new compounds Pr3Re2O10 and Pr4Re2O11 were prepared by reaction of elemental praseodymium with the metaperrhenate Pr(ReO4)3. They were characterized through their X‐ray powder diagrams. Pr3Re2O10 was found to be monoclinic: a = 778.47(9) pm, b = 773.62(9) pm, c = 706.10(8) pm, β = 114.77(1)°. It is isotypic with La3Os2O10 and La3Re2O10. Pr4Re2O11 crystallizes with Nd4Re2O11 type structure with the tetragonal lattice constants a = 1272.49(3) pm, c = 562.29(2) pm. The compounds Nd4Re2O11 and Sm4Re2O11 are confirmed. The magnetic properties of Ho5Re2O12, Tb5Re2O12, Pr3Re2O10, Pr4Re2O11, Nd4Re2O11, and Sm4Re2O11 were investigated with a Faraday balance. None of these compounds shows magnetic order above 200 K.  相似文献   

15.
Single crystals of LiClO4 were obtained during attempts to prepare lithium containing rare earth perchlorates from a lithium perchlorate melt. In the crystal structure of LiClO4 (ortho‐rhombic, Pnma, Z =4, a = 865.7(1), b = 691.29(9) pm, c = 483.23(6), Rall = 0.0273) the Li+ ions are in distorted octahedral coordination of oxygen atoms. The octahedra are linked via common edges to chains according to 1[LiO2/1O4/2] which run in the [010] direction. The perchlorate ions are almost ideal tetrahedra.  相似文献   

16.
Sr5[NbN4]N (transparent, red single crystals) was synthesized by reaction of Sr2N with Nb under nitrogen at ambient pressure and 1223 K. The crystal structure was solved and refined in the space group Pbcm (no. 57), Z = 4, with lattice constants a = 646.6(3) pm, b = 1792.5(9) pm, c = 729.8(4) pm, and R = 0.019, wR2 = 0.034. The crystal structure contains both isolated tetrahedra [NbN4]7‐ as well as chains of corner sharing octahedra 1(Sr4Sr2/2N7+). Strontium is irregularly coordinated by nitrogen (CN = 4 ‐ 6, Sr‐N: 252.3(4) ‐ 340.8(3) pm); nitrogen is located in a distorted octahedral environment by strontium and niobium (Nb‐N: 194.5(4) ‐ 199.2(2) pm). By formal reduction of the structural building units to their centers a close structural relationship to both the NiAs and the CaSi type structure is evident.  相似文献   

17.
The crystal structure of the new complex vanadium oxide Na6Mg2(VO4)2(V2O7) was solved from X‐ray single‐crystal data. The structure contains VO4 tetrahedra and MgO6 octahedra, linked by corners and forming a complex three‐dimensional framework. A half of the VO4 tetrahedra are connected only to MgO6 octahedra, whereas the others are corner‐sharing, forming V2O7 pyrovanadate groups with statistically random orientations. One unique Mg atom is located at an inversion centre, while the other Mg atom, one unique V atom and five unique O atoms lie on mirror planes.  相似文献   

18.
NaNb6Cl15 is prepared by heating Nb3Cl8, NaCl and Nb under Ar at 1 170 < T [K] < 1 270 forming black regular dodecahedra. It crystallizes in the cubic space group Ia3 d (a = 2 041.7(2) pm at room temperature) and transforms to a tetragonal structure below 150 K (probably I41/acd, a = 2 037.2(6), c = 2 028.2(2) pm at 80 K). The Na+ ions are at room temperature dynamically disordered in a split position. Their mobility is investigated by IR spectroscopy and electrochemical methods.  相似文献   

19.
Metal clusters, discrete or condensed, are characteristic of the structures of many compounds which contain transition metals in low oxidation states. The highly reduced oxoniobates support the concept of condensed clusters. They contain Nb6O12 clusters which are either isolated or linked at the apices of the Nb6 octahedra to form oligomeric chains or networks. The analysis of the bonding relationships allows the identification of different types of Nb atoms and thus the quantitative prediction of valence electron concentrations for finite or infinite structures composed of these condensed M6X12 clusters.  相似文献   

20.
Synthesis and Crystal Structure of U2Ta6O19, a New Compound with “Jahnberg‐Structure” and a Note to the First Oxide Chlorides in the Systems Th/Nb/O/Cl and Th/Zr(Hf)/Nb/O/Cl Black crystals of U2Ta6O19 with hexagonal shape were obtained (at T1) by chemical transport using HCl (p (HCl, 298 K) = 1 atm; silica tube) as transport agent in a temperature gradient (T2 → T1; 1000 °C → 950 °C) and using a mixture of UO2, Ta2O5, and HfO2 (or ZrO2) (1 : 2 : 2) as starting materials (at T2). For the structure determination the best result was achieved in space group P63/mcm (No. 193, a = 6.26(2) Å, c = 19.86(6) Å). U2Ta6O19 is isotypical to Th2Ta6O19. In the crystal structure each uranium atom is surrounded by oxygen atoms like a bi‐capped trigonal antiprism and tantalum atoms like a pentagonal bipyramid (CN = 7). Like the “Jahnberg Structures” both coordination polyhedra arrange themselves in separate layers (U–O‐polyhedra, in o‐, Ta–O‐polyhedra in p‐layers) so that in the direction of the c‐axis the sequence of layers is p‐p‐o. Using chemical transport it was possible to prepare the compounds Th12Nb16O63Cl2 and Th8M4Nb16O63Cl2 (M = Zr, Hf), which are the first quaternary and quinquinary examples in these systems. They crystallize isotypically.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号