首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Solid-state electrolytes (SSEs) are capable of inhibiting the growth of lithium dendrites, demonstrating great potential in next-generation lithium-ion batteries (LIBs). However, poor room temperature ionic conductivity and the unstable interface between SSEs and the electrode block their large-scale applications in LIBs. Composite solid-state electrolytes (CSSEs) formed by mixing different ionic conductors lead to better performance than single SSEs, especially in terms of ionic conductivity and interfacial stability. Herein, we have systematically reviewed recent developments and investigations of CSSEs including inorganic composite and organic–inorganic composite materials, in order to provide a better understanding of designing CSSEs. The comparison of different types of CSSEs relative to their parental materials is deeply discussed in the context of ionic conductivity and interfacial design. Then, the proposed ion transfer pathways and models of lithium dendrite growth in composites are outlined to inspire future development of CSSEs.

Composite solid-state electrolytes (CSSEs) formed by mixing different ionic conductors lead to better performance than a single solid-state electrolytes (SSEs), demonstrating great potentials in the next-generation lithium-ion batteries (LIBs).  相似文献   

2.
Solid-state electrolytes (SSEs) with high ionic conductivity and superior stability are considered to be a key technology for the safe operation of solid-state lithium batteries. However, current SSEs are incapable of meeting the requirements for practical solid-state lithium batteries. Here we report a general strategy for achieving high-performance SSEs by engineering polymers of intrinsic microporosity (PIMs). Taking advantage of the interconnected ion pathways generated from the ionizable groups, high ionic conductivity (1.06×10−3 S cm−1 at 25 °C) is achieved for the PIMs-based SSEs. The mechanically strong (50.0 MPa) and non-flammable SSEs combine the two superiorities of outstanding Li+ conductivity and electrochemical stability, which can restrain the dendrite growth and prevent Li symmetric batteries from short-circuiting even after more than 2200 h cycling. Benefiting from the rational design of SSEs, PIMs-based SSEs Li-metal batteries can achieve good cycling performance and superior feasibility in a series of withstand abuse tests including bending, cutting, and penetration. Moreover, the PIMs-based SSEs endow high specific capacity (11307 mAh g−1) and long-term discharge/charge stability (247 cycles) for solid-state Li−O2 batteries. The PIMs-based SSEs present a powerful strategy for enabling safe operation of high-energy solid-state batteries.  相似文献   

3.
《中国化学快报》2022,33(9):4326-4330
Solid-state electrolytes (SSEs) with high ionic conductivity, mechanical stability, and high thermal stability, as well as the stringent requirement of application in high-temperature fuel cells and lithium-ion batteries is receiving increasing attention. Polymer nanocomposites (PNCs), combining the advantages of inorganic materials with those of polymeric materials, offer numerous opportunities for SSEs design. In this work, we report a facile and general one-pot approach based on polymerization-induced microphase separation (PIMS) to generate PNCs with bi-continuous microphases. This synthetic strategy transforms a homogeneous liquid precursor consisting of polyoxometalates (POMs, H3PW12O40, Li7[V15O36(CO3)]), poly(ethylene glycol) (PEG) macro-chain-transfer agent, styrene and divinylbenzene monomers, into a robust and transparent monolith. The resulting POMs are uniformly dispersed in the PEG block (PEG/POM) to form a conducting pathway that successfully realizes the effective transfer of protons and lithium ions, while the highly cross-linked polystyrene domains (P(S-co-DVB)) as mechanical support provide outstanding mechanical properties and thermal stability. As the POM loading ratio up to 35 wt%, the proton conductivity of nanocomposite reaches as high as 5.99 × 10-4 S/cm at 100 °C in anhydrous environment, which effectively promotes proton transfer under extreme environments. This study broadens the application of fuel cells and lithium-ion batteries in extreme environments.  相似文献   

4.
袁安  谭龙  刘莉  应进  汤昊  孙润光 《化学通报》2019,82(8):706-716
全固态锂离子电池具有安全性能好、能量密度高、工作温区广等优点,被广泛应用于便携式电子设备。固态电解质是全固态锂离子电池的关键材料之一,其中的硫化物电解质具有离子电导率高、电化学窗口宽、晶界电阻低和易成膜等特点,被认为最有希望应用于全固态锂离子电池。本文综述了Li_2S-P_2S_5体系电解质的发展状况,包括固态电解质的制备、改性、表征以及电极/固态电解质之间的固-固界面的稳定兼容问题。本文还涉及了以Li_2S-P_2S_5为电解质的全固态锂离子电池性能的研究进展。  相似文献   

5.
《结构化学》2019,38(12)
The 2019 Nobel Prize in Chemistry was awarded to three scientists who have made great contributions in discovery of lithium-ion batteries(LIBs). The LIBs with graphite as anode have dominated the rechargeable battery markets of portable electronics and electric vehicles(EVs). For the next-generation batteries, high energy density is the important trend of development. Thus lithium metal is considered as the most promising anode owing to its highest theoretical capacity and the lowest electrochemical potential. However, the severe safety concerns hinder its practical application. The uncontrollable growth of lithium dendrites leads to capacity decay, low Coulombic efficiency, possible short circuit and thermal runaway. In this perspective, various methods to protect Li metal anode have been analyzed. The development of solid-state electrolytes(SSEs) and the role of lithium anode in SSEs are discussed. Several new strategies for improving the safety of Li metal based batteries are proposed to realize the real market-oriented security applications.  相似文献   

6.
To promote the development of solid‐state batteries, polymer‐, oxide‐, and sulfide‐based solid‐state electrolytes (SSEs) have been extensively investigated. However, the disadvantages of these SSEs, such as high‐temperature sintering of oxides, air instability of sulfides, and narrow electrochemical windows of polymers electrolytes, significantly hinder their practical application. Therefore, developing SSEs that have a high ionic conductivity (>10?3 S cm?1), good air stability, wide electrochemical window, excellent electrode interface stability, low‐cost mass production is required. Herein we report a halide Li+ superionic conductor, Li3InCl6, that can be synthesized in water. Most importantly, the as‐synthesized Li3InCl6 shows a high ionic conductivity of 2.04×10?3 S cm?1 at 25 °C. Furthermore, the ionic conductivity can be recovered after dissolution in water. Combined with a LiNi0.8Co0.1Mn0.1O2 cathode, the solid‐state Li battery shows good cycling stability.  相似文献   

7.
The continuous development of solid-state electrolytes(SSEs) has stimulated immense progress in the development of all-solid-state batteries(ASSBs). Particularly, garnet-typed SSEs in formula of Li7La3Zr2O12(LLZO) are under intensive investigation to exploit their advantage in high lithium ions conductivity(>1 mS/cm), wide electrochemical window(>5 V), and good chemical electrochemical stability for lithium, which are critical factors to ensure a stable, and high performance ASSBs. This review will focus on the challenges related to LLZOs-based electrolyte, and update the recent developments in structural design of LLZOs, which are discussed in three major sections:(i) crystal structure and the lithium-ion transport mechanism of LLZO; (ii) single-site and multi-site doping of Li sites, La sites and Zr sites to enhance Li ions conductivity(LIC) and stability of LLZO; (iii) interface strategies between electrodes and LLZO to decrease interface area-specific resistance(ASR).  相似文献   

8.
Volume expansion and poor conductivity are two major obstacles that hinder the pursuit of the lithium-ion batteries with long cycling life and high power density. Herein, we highlight a misfit compound PbNbS3 with a soft/rigid superlattice structure, confirmed by scanning tunneling microscopy and electrochemical characterization, as a promising anode material for high performance lithium-ion batteries with optimized capacity, stability, and conductivity. The soft PbS sublayers primarily react with lithium, endowing capacity and preventing decomposition of the superlattice structure, while the rigid NbS2 sublayers support the skeleton and enhance the migration of electrons and lithium ions, as a result leading to a specific capacity of 710 mAh g−1 at 100 mA g−1, which is 1.6 times of NbS2 and 3.9 times of PbS. Our finding reveals the competitive strategy of soft/rigid structure in lithium-ion batteries and broadens the horizons of single-phase anode material design.  相似文献   

9.
All-solid-state sodium batteries with poly(ethylene oxide) (PEO)-based electrolytes have shown great promise for large-scale energy storage applications. However, the reported PEO-based electrolytes still suffer from a low Na+ transference number and poor ionic conductivity, which mainly result from the simultaneous migration of Na+ and anions, the high crystallinity of PEO, and the low concentration of free Na+. Here, we report a high-performance PEO-based all-solid-state electrolyte for sodium batteries by introducing Na3SbS4 to interact with the TFSI anion in the salt and decrease the crystallinity of PEO. The optimal PEO/NaTFSI/Na3SbS4 electrolyte exhibits a remarkably enhanced Na+ transference number (0.49) and a high ionic conductivity of 1.33 × 10−4 S cm−1 at 45 °C. Moreover, we found that the electrolyte can largely alleviate Na+ depletion near the electrode surface in symmetric cells and, thus, contributes to stable and dendrite-free Na plating/stripping for 500 h. Furthermore, all-solid-state Na batteries with a 3,4,9,10-perylenetetracarboxylic dianhydride cathode exhibit a high capacity retention of 84% after 200 cycles and superior rate performance (up to 10C). Our work develops an effective way to realize a high-performance all-solid-state electrolyte for sodium batteries.

A high-performance all-solid-state PEO/NaTFSI/Na3SbS4 electrolyte for sodium batteries is realized owing to the electrostatic interaction between TFSI in the salt and Na3SbS4, which immobilizes TFSI anions and promotes the dissociation of NaTFSI.  相似文献   

10.
Liu  Jiuqing  Wang  Cheng  Wu  Xiufeng  Zhu  Fangfang  Liu  Meng  Xi  Yang 《Journal of Solid State Electrochemistry》2019,23(1):277-284

The low crystallinity poly(vinylidene fluoride)/tetraethyl orthosilicate silane (PVDF/TEOS) composite separator with a finger-like pore structure for lithium-ion battery has been successfully prepared by non-solvent-induced phase separation (NIPS) technique. The PVDF/TEOS composite separator shows the excellent wettability and electrolyte retention properties compared with Celgard 2320 separator. AC impedance spectroscopy results indicate that the novel PVDF/TEOS composite separator has ion conductivity of 1.22 mS cm−1 at 25 °C, higher than that of Celgard 2320 separator (0.88 mS cm−1). The lithium-ion transference number of PVDF composite separator added 0.7% TEOS was 0.481, better than that of Celgard 2400 (0.332). What is more, the lithium-ion batteries assembled with PVDF/TEOS composite separator show good cycling performance and rate capability.

  相似文献   

11.
Zn batteries are usually considered as safe aqueous systems that are promising for flexible batteries. On the other hand, any liquids, including water, being encapsulated in a deformable battery may result in problems. Developing completely liquid-free all-solid-state Zn batteries needs high-quality solid-state electrolytes (SSEs). Herein, we demonstrate in situ polymerized amorphous solid poly(1,3-dioxolane) electrolytes, which show high Zn ion conductivity of 19.6 mS cm−1 at room temperature, low interfacial impedance, highly reversible Zn plating/stripping over 1800 h cycles, uniform and dendrite-free Zn deposition, and non-dry properties. The in-plane interdigital-structure device with the electrolyte completely exposed to the open atmosphere can be operated stably for over 30 days almost without weight loss or electrochemical performance decay. Furthermore, the sandwich-structure device can normally operate over 40 min under exposure to fire. Meanwhile, the interfacial impedance and the capacity using in situ-formed solid polymer electrolytes (SPEs) remain almost unchanged after various bending tests, a key criterion for flexible/wearable devices. Our study demonstrates an approach for SSEs that fulfill the requirement of no liquid and mechanical robustness for practical solid-state Zn batteries.  相似文献   

12.
Solid-state batteries (SSBs) that use solid electrolytes instead of flammable liquid electrolytes have the potential to generate higher specific capacity and offer better safety. Magnesium (Mg) based SSBs with Mg metal anodes are considered to be one of the most promising energy storage candidates, because it gives high theoretical volumetric capacities of 3830 mAh cm−3. Here, we demonstrate an atomic layer deposition (ALD) process with a double nitrogen plasma process that successfully produces nitrogen-incorporated magnesium phosphorus oxynitride (MgPON) solid-state electrolyte (SSE) thin films at a low deposition temperature of 125 °C. The ALD MgPON SSEs exhibit an ionic conductivity of 0.36 and 1.2 μS cm−1 at 450 and 500 °C, respectively. The proposed ALD strategy shows the ability of conformal deposition nitrogen-doped SSEs on pattered substrates and is attractive for using nitride ion-conducing films as protective or wetting interlayers in solid-state Mg and Li batteries.  相似文献   

13.
Although solid-state batteries (SSBs) are high potential in achieving better safety and higher energy density, current solid-state electrolytes (SSEs) cannot fully satisfy the complicated requirements of SSBs. Herein, a covalent organic framework (COF) with multi-cationic molecular chains (COF-MCMC) was developed as an efficient SSE. The MCMCs chemically anchored on COF channels were generated by nano-confined copolymerization of cationic ionic liquid monomers, which can function as Li+ selective gates. The coulombic interaction between MCMCs and anions leads to easier dissociation of Li+ from coordinated states, and thus Li+ transport is accelerated. While the movement of anions is restrained due to the charge interaction, resulting in a high Li+ conductivity of 4.9×10−4 S cm−1 and Li+ transference number of 0.71 at 30 °C. The SSBs with COF-MCMC demonstrate an excellent specific energy density of 403.4 Wh kg−1 with high cathode loading and limited Li metal source.  相似文献   

14.
Sodium-ion batteries (SIBs) are promising alternatives to lithium-based energy storage devices for large-scale applications, but conventional lithium-ion battery anode materials do not provide adequate reversible Na-ion storage. In contrast, conversion-based transition metal sulfides have high theoretical capacities and are suitable anode materials for SIBs. Iron sulfide (FeS) is environmentally benign and inexpensive but suffers from low conductivity and sluggish Na-ion diffusion kinetics. In addition, significant volume changes during the sodiation of FeS destroy the electrode structure and shorten the cycle life. Herein, we report the rational design of the FeS/carbon composite, specifically FeS encapsulated within a hierarchically ordered mesoporous carbon prepared via nanocasting using a SBA-15 template with stable cycle life. We evaluated the Na-ion storage properties and found that the parallel 2D mesoporous channels in the resultant FeS/carbon composite enhanced the conductivity, buffered the volume changes, and prevented unwanted side reactions. Further, high-rate Na-ion storage (363.4 mAh g−1 after 500 cycles at 2 A g−1, 132.5 mAh g−1 at 20 A g−1) was achieved, better than that of the bare FeS electrode, indicating the benefit of structural confinement for rapid ion transfer, and demonstrating the excellent electrochemical performance of this anode material at high rates.  相似文献   

15.
All-solid-state polymer lithium-ion batteries are ideal choice for the next generation of rechargeable lithium-ion batteries due to their high energy, safety and flexibility. Among all polymer electrolytes, PEO-based polymer electrolytes have attracted extensive attention because they can dissolve various lithium salts. However, the ionic conductivity of pure PEO-based polymer electrolytes is limited due to high crystallinity and poor segment motion. An inorganic filler SiO2 nanospheres and a plasticizer Succinonitrile (SN) are introduced into the PEO matrix to improve the crystallization of PEO, promote the formation of amorphous region, and thus improve the movement of PEO chain segment. Herein, a PEO18−LiTFSI−5 %SiO2−5 %SN composite solid polymer electrolyte (CSPE) was prepared by solution-casting. The high ionic conductivity of the electrolyte was demonstrated at 60 °C up to 3.3×10−4 S cm−1. Meanwhile, the electrochemical performance of LiFePO4/CSPE/Li all-solid-state battery was tested, with discharge capacity of 157.5 mAh g−1 at 0.5 C, and capacity retention rate of 99 % after 100 cycles at 60 °C. This system provides a feasible strategy for the development of efficient all-solid-state lithium-ion batteries.  相似文献   

16.
Silicon monoxide (SiO) is a kind of promising anode material for lithium-ion batteries because of its smaller volume change during the charge and discharge process than pure silicon and its higher theoretical capacity than commercialized graphite. However, its fast-fading capacity still restricts the development of practical application of SiO. A simple and cheap strategy to dope nitrogen and coat carbon on the surface of disproportionated SiO is proposed to improve the cycling stability significantly even at a high specific current. The capacity retention is nearly 85% after 250 cycles and more than 69% after 500 cycles at a specific current of 1000 mA g−1. Even at a specific current of 2000 mA g−1, its cycling performance behaves similarly to that of 1000 mA g−1. Nitrogen doping in materials could improve the conductivity of materials because pyridinic nitrogen and pyrrolic nitrogen could improve the electron conductivity and provide defects to contribute to the diffusion of lithium ions. The use of pitch and melamine, which are easily available industrial raw materials, makes it possible to contribute to the practical application.  相似文献   

17.
A new system of electrolytes has been developed and studied for lithium-ion batteries. This new system is based on the interactions between Li2O or Li2O2 and tris(pentafluorophenyl) borane (TPFPB) in carbonate based organic solvents. This opens up a completely new approach in developing non-aqueous electrolytes. In general, the solubility of Li2O or Li2O2 is very low in organic solvents and the ionic conductivities of these solutions are almost undetectable. By adding certain amount of tris(pentafluorophenyl) borane (TPFPB), one type of boron based anion receptors (BBARs), the solubility of Li2O or Li2O2 in carbonate based solvents was significantly enhanced. In addition, the Li+ transference numbers of these new electrolytes measured were as high as 0.7, which are more than 100% higher than the values for the conventional electrolytes for lithium-ion batteries. The room-temperature conductivities are around 1 × 10−3 S/cm. These new electrolytes are compatible with LiMn2O4 cathode for lithium-ion batteries.  相似文献   

18.
A novel ternary Sb–Co–P alloy electrode was prepared by electroplating on copper current collector as a promising negative electrode material for lithium-ion batteries. The structural and morphological features of the Sb–Co–P alloy were characterized by powder X-ray diffraction (XRD) and scanning electron microscope (SEM). The as-prepared alloy electrode exhibits a high specific capacity and an excellent cycleability. The initial discharge and charge capacities of the Sb–Co–P alloy anode were measured 700 and 539 mA h g−1, respectively. The results suggest that the Sb–Co–P alloy material obtained by the electrodeposition shows a good candidate anode material for lithium-ion batteries.  相似文献   

19.
Solid electrolytes can potentially address three key limitations of the organic electrolytes used in today’s lithium-ion batteries, namely, their flammability, limited electrochemical stability and low cationic transference number. The pioneering works of Wright and Armand, suggesting the use of solid poly(ethylene oxide)-based polymer electrolytes (PE) for lithium batteries, paved the way to the development of solid-state batteries based on PEs. Yet, low cationic mobility–low Li+ transference number in polymer materials coupled with sufficiently high room-temperature conductivity remains inaccessible. The current strategies employed for the production of single-ion polymer conductors include designing new lithium salts, bonding of anions with the main polyether chain or incorporating them into the side chains of comb-branched polymers, plasticizing, adding inorganic fillers and anion receptors. Glass and crystalline superionic solids are classical single-ion-conducting electrolytes. However, because of grain boundaries and poor electrode/electrolyte interfacial contacts, achieving electrochemical performance in solid-state batteries comprising polycrystalline inorganic electrolytes, comparable to the existing batteries with liquid electrolytes, is particularly challenging. Quasi-elastic polymer-in-ceramic electrolytes provide good alternatives to the traditional lithium-ion-battery electrolytes and are believed to be the subject of extensive current research. This review provides an account of the advances over the past decade in the development of single-ion-conducting electrolytes and offers some directions and references that may be useful for further investigations.  相似文献   

20.
Tin-based nanocomposite materials embedded in carbon frameworks can be used as effective negative electrode materials for lithium-ion batteries (LIBs), owing to their high theoretical capacities with stable cycle performance. In this work, a low-cost and productive facile hydrothermal method was employed for the preparation of a Sn/C nanocomposite, in which Sn particles (sized in nanometers) were uniformly dispersed in the conductive carbon matrix. The as-prepared Sn/C nanocomposite displayed a considerable reversible capacity of 877 mAhg−1 at 0.1 Ag−1 with a high first cycle charge/discharge coulombic efficiency of about 77%, and showed 668 mAh/g even at a relatively high current density of 0.5 Ag−1 after 100 cycles. Furthermore, excellent rate capability performance was achieved for 806, 697, 630, 516, and 354 mAhg−1 at current densities 0.1, 0.25, 0.5, 0.75, and 1 Ag−1, respectively. This outstanding and significantly improved electrochemical performance is attributed to the good distribution of Sn nanoparticles in the carbon framework, which helped to produce Sn/C nanocomposite next-generation negative electrodes for lithium-ion storage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号