共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Christian Rossner Ekaterina B. Zhulina Eugenia Kumacheva 《Angewandte Chemie (Weinheim an der Bergstrasse, Germany)》2019,131(27):9370-9375
Using two orthogonal external stimuli, programmable staged surface patterning and self‐assembly of inorganic nanoparticles (NPs) was achieved. For gold NPs capped with end‐grafted poly(styrene‐block‐(4‐vinylbenzoic acid)), P(St‐block‐4VBA), block copolymer ligands, surface‐pinned micelles (patches) formed from NP‐adjacent PSt blocks under reduced solvency conditions (Stimulus 1); solvated NP‐remote P(4VBA) blocks stabilized the NPs against aggregation. Subsequent self‐assembly of patchy NPs was triggered by crosslinking the P(4VBA) blocks with copper(II) ions (Stimulus 2). Block copolymer ligand design has a strong effect on NP self‐assembly. Small, well‐defined clusters assembled from NPs functionalized with ligands with a short P(4VBA) block, while NPs tethered with ligands with a long P(4VBA) block formed large irregularly shaped assemblies. This approach is promising for high‐yield fabrication of colloidal molecules and their assemblies with structural and functional complexity. 相似文献
5.
6.
7.
8.
Justin A. Peruzzi Miranda L. Jacobs Timothy Q. Vu Kenneth S. Wang Neha P. Kamat 《Angewandte Chemie (Weinheim an der Bergstrasse, Germany)》2019,131(51):18856-18863
Targeted vesicle fusion is a promising approach to selectively control interactions between vesicle compartments and would enable the initiation of biological reactions in complex aqueous environments. Here, we explore how two features of vesicle membranes, DNA tethers and phase‐segregated membranes, promote fusion between specific vesicle populations. Membrane phase‐segregation provides an energetic driver for membrane fusion that increases the efficiency of DNA‐mediated fusion events. The orthogonality provided by DNA tethers allows us to direct fusion and delivery of DNA cargo to specific vesicle populations. Vesicle fusion between DNA‐tethered vesicles can be used to initiate in vitro protein expression to produce model soluble and membrane proteins. Engineering orthogonal fusion events between DNA‐tethered vesicles provides a new strategy to control the spatiotemporal dynamics of cell‐free reactions, expanding opportunities to engineer artificial cellular systems. 相似文献
9.
10.
11.
12.
13.
《Angewandte Chemie (Weinheim an der Bergstrasse, Germany)》2017,129(31):9141-9145
A facile and electrostatically driven approach has been developed to prepare bicontinuous polymer nanocomposites that is based on the polyoxometalate (POM) macroion induced phase transition of PS‐b ‐P2VP from an initial lamellar phase to a stable bicontinuous phase. The multi‐charged POMs can electrostatically cross‐link P2VP blocks and give rise to bicontinuous phases in which the POM hybrid conductive domains occupy a large volume fraction of more than 50 %. Furthermore, the POMs can give rise to high proton conductivity and serve as nanoenhancers, endowing the bicontinuous nanocomposites with a conductivity of 0.1 mS cm−1 and a Young's modulus of 7.4 GPa at room temperature; these values are greater than those of pristine PS‐b ‐P2VP by two orders of magnitude and a factor of 1.8, respectively. This approach can provide a new concept based on electrostatic control to design functional bicontinuous polymer materials. 相似文献
14.
15.
16.
17.
18.
Yajun Zhao Yong Wang Xingping Zhou Zhigang Xue Xianhong Wang Xiaolin Xie Rinaldo Poli 《Angewandte Chemie (Weinheim an der Bergstrasse, Germany)》2019,131(40):14449-14456
Switchable polymerization provides the opportunity to regulate polymer sequence and structure in a one‐pot process from mixtures of monomers. Herein we report the use of O2 as an external stimulus to switch the polymerization mechanism from the radical polymerization of vinyl monomers mediated by (Salen)CoIII?R [Salen=N,N′‐bis(3,5‐di‐tert‐butylsalicylidene)‐1,2‐cyclohexanediamine; R=alkyl] to the ring‐opening copolymerization (ROCOP) of CO2/epoxides. Critical to this process is unprecedented monooxygen insertion into the Co?C bond, as rationalized by DFT calculations, leading to the formation of (Salen)CoIII?O?R as an active species to initiate ROCOP. Diblock poly(vinyl acetate)‐b‐polycarbonate could be obtained by ROCOP of CO2/epoxides with preactivation of (Salen)Co end‐capped poly(vinyl acetate). Furthermore, a poly(vinyl acetate)‐b‐poly(methyl acrylate)‐b‐polycarbonate triblock copolymer was successfully synthesized by a (Salen)cobalt‐mediated sequential polymerization with an O2‐triggered switch in a one‐pot process. 相似文献
19.
Hyeyoung Kong Jooyoung Song Jyongsik Jang 《Macromolecular rapid communications》2009,30(15):1350-1355
A simple synthetic method has been developed for the fabrication of antimicrobial polyrhodanine nanotubes with silver nanoparticles. Rhodanine monomer first forms one‐dimensional complexes with silver ions due to coordinative interactions and consecutively reduces the silver ions during chemical‐oxidation polymerization. The polymerization procedure is analyzed by transmission electron microscopy and scanning electron microscopy in situ. The synthesized silver nanoparticles/polyrhodanine nanotubes are applied as an antimicrobial agent against Gram‐negative bacteria, E. coli and Gram‐positive bacteria, S. aureus. The antimicrobial tests demonstrate that the silver/polyrhodanine nanotubes have superior antimicrobial properties to silver nanoparticles and rhodanine monomer.
20.
《Angewandte Chemie (Weinheim an der Bergstrasse, Germany)》2017,129(36):10810-10815
Bicontinuous structures with hyperbolic surfaces have been found in a variety of natural and synthetic systems. Herein, we present the synthesis and structural study of the shifted double‐primitive networks, which is known as the rare “plumber's nightmare”, and its interconversion into diamond networks. The scaffold was prepared by self‐assembly of an amphiphilic triblock terpolymer and silica precursors. Electron crystallography indicates that the structure consists of two sets of hollow primitive networks shifted along 0.75b and 0.25c axes ( 2pcu (38 63), space group Cmcm ). The “side‐by‐side” epitaxial relationship of the primitive and diamond networks with unit cell ratio of about 1.30 has been directly observed with the intermediate surface related to the rPD family. These results bring new insights to previous theoretical studies. 相似文献