首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Synthesis and Structure of a Tetragonal Fluoroperovskitevariety Deficient in Cations — Cs4PdMn2F12 Single crystals of red Cs4PdMn2F12 were obtained by systematic investigations in the system CsF/MnF3/Pd/PdF3. The Compound crystallizes with a = b = 856.89(6) pm, c = 1918.35(18) pm, spcgr. I 41lamd — D (No. 141) and Z = 4. It is structurally related to K4MnMn2F12, but with square arrangement (isotypic?) of F around Pd2+.  相似文献   

2.
Synthesis and Structure of Ag7M6F31 (M = Zr, Hf, Ce) Colorless single crystals of Ag7Zr6F31 have been obtainend by heating up a mixture of AgF and ZrF4 in a closed goldtube (T = 450 °C, t ∼ 2 d). The compound crystallizes trigonal, space group R3‐C (No. 148) with a = 1400,9(3) pm, c = 979,0(2) pm, Z = 3. Also prepared were the isotypic compounds Ag7Hf6F31 with a = 1393,8(2) pm, c = 978,7(2) pm, and Ag7Ce6F31 with a = 1469,8(1) pm, c = 998,5(1) pm.  相似文献   

3.
Synthesis, Structure, and Magnetic Properties of Compounds NaMIIZr2F11 (MII = Ti, V, Cu) and a Notice on NaPdZr2F11 By synthesizing NaTiZr2F11 in form of red single crystals, it was possible to obtain a complex fluoride with Ti2+ for the first time. It crystallizes like the analogous greenish blue vanadium compound isotypic to AgPdZr2F11 [1] monoclinic, spacegroup C2/m–C (No. 12) with a = 918.0/911.5 pm, b = 682.6/675.7 pm, c = 780.8/776.6 pm, β = 116.2/116.2º and Z = 2. Colourless NaCuZr2F11 however crystallizes as a result of the Jahn-Teller distortion of Cu2+ triclinic (space group P1 –C (No. 2), a = 552.7 pm, b = 568.2 pm, c = 768.0 pm, α = 111.0º, β = 97.4º, γ = 106.4º) and is – as expected – isotypic to NaAgZr2F11 [1].  相似文献   

4.
K3Er7S12 and Rb3Er7S12: Two Ternary Erbium(III) Sulfides with Channel Structures The isotypic ternary erbium(III) sulfides K3Er7S12 (a = 1185.38(9), b = 2461.5(2), c = 393.59(3) pm) and Rb3Er7S12 (a = 1203.51(9), b = 2483.0(2), c = 394.85(3) pm; both orthorhombic, Pnnm, Z = 2) are obtained by reacting erbium metal and sulfur with an excess of alkali chloride (KCl or RbCl, respectively) serving as flux and reagent within seven days at 900 °C. The rod—shaped, yellow, transparent single crystals distinguish themselves in their crystal structure by a framework of corner— and edge—linked [ErS6] octahedra (d(Er3+—S2—) = 265—285 pm), in which the alkali metal cations (K+ and Rb+, respectively; CN = 6 and 7 + 1) are inserted into channels running along [001]. Under consideration of the ionic radius quotients ri(A+)/ri(Ch2—) (A = K—Cs, Ch = S—Te) the existence range of this Cs3Y7Se12—type of structure is discussed.  相似文献   

5.
Synthesis and Structure of Zr4ON3F5, a Compound with a Fluorite Related Superstructure of the Vernier Type Ammonolysis of β? ZrF4 or ZrF4 · NH3 yields zirconium nitride fluoride ZrNF and zirconium oxide nitride fluoride Zr4ON3F5. Electron diffraction and electron energy loss spectroscopy were used to distinguish these two ammonolysis products by structure and composition. ZrNF crystallizes isotypically to baddeleyite ZrO2 in the space group P21/c with the lattice constants a = 522.7(3), b = 502.6(2), c = 519.1(3) pm, β = 98.98(7)°, Z = 4, while Zr4ON3F5 forms an anion-excess fluorite-related structure of the vernier type. The structure of Zr4ON3F5 was refined from neutron powder diffraction data. It crystallizes monoclinic in space group P1121/b with lattice constants a = 512.17(3), b = 2 151.3(1), c = 536.69(3) pm, γ = 90.128(6)°, Z = 4. Within the homologous series MnX2n+1 of the vernier phases Zr4ON3F5 is a member with n = 4.  相似文献   

6.
Transition Metal Peroxofluoro Complexes. IX. Crystal Structure of Ba3[Ti(O2)F5]2 · 2 H2O The pale yellow hydrat Ba3[Ti(O2)F5]2 · 2 H2O crystallizes tetragonal (space group P42/mbc, a = 1 248.5(3), c = 812.2(2) pm; Z = 4; R = 0.026 for 404 independent reflections). It contains isolated [Ti(O2)F5]3? anions. Thermal decomposition leads directly to α-Ba3Ti2O2F10, which is isotypic to α-Ba3Al2F12.  相似文献   

7.
On Complex Fluorides of Divalent Palladium For the first time single crystals of the new compounds RbPdPdF5, KPdPdF5, and K2CsPdF5 have been obtained. Orange brown RbPdPdF5 crystallizes orthorhombic, space group Imma–D2h28 (No. 74) with a = 633.6(1) pm, b = 765.5.(1) pm, c = 1067.5(1) pm and Z = 4 and is isotypic with CsPdPdF5 [1]. Structure related KPdPdF5 (also orange brown) crystallizes orthorhombic too, but in space group Pnma–D2h16 (No. 62) with a 614.12(9) pm, b = 748.7(1) pm, c = 1065.0(2) pm and Z = 4. K2CsPdF5, light yellow, crystallizes tetragonal with a = 736.3(1) pm, c = 628.0(1) pm, Z = 2, and is isotypic with Rb2CsPdF5 (space group P4/mbm? D4h5 Nr. 127), an ordered structure variant of the Rb3PdF5-Type [1].  相似文献   

8.
According to X-ray powder work, orthorhombic Rb2ZrO3 [a = 10.7, b = 7.40, c = 5.87 Å] and Rb2SnO3 [a = 10.7, b = 7.49, c = 5.75 Å] are isotypic with Rb2PbO3. Discussion of different structural models and the Madelung Part of Lattice Energy (MAPLE) shows that the annormal Coordination Number of M4+ (CN = 5) is caused by the type of formula.  相似文献   

9.
Syntheses and Crystal Structures of Rb4Br2O and Rb6Br4O In the quasi‐binary system RbBr/Rb2O, the addition compounds Rb4Br2O and Rb6Br4O are obtained by solid state reaction of the boundary components RbBr and Rb2O. Crystals of red‐orange Rb4Br2O as well as of orange Rb6Br4O decompose immediately when exposed to air. Rb4Br2O (Pearson code tI14, I4/mmm, a = 544.4(6) pm, c = 1725(2) pm, Z = 2, 175 symmetry independent reflections with Io > 2σ(I), R1= 0.0618) crystallizes in the anti K2NiF4 structure type; Rb6Br4O (Pearson code hR22, R3c, a = 1307.8(3) pm, c = 1646.6(5) pm, Z = 6, 630 symmetry independent reflections with Io > 2σ(I), R1 = 0.0759) in the anti K4CdCl6 structure type. Both structures contain characteristic ORb6‐octahedra and can be understood as expanded perovskites, following the general systematics of alkaline metal oxide halides.  相似文献   

10.
Carbonate Hydrates of the Heavy Alkali Metals: Preparation and Structure of Rb2CO3 · 1.5 H2O und Cs2CO3 · 3 H2O Rb2CO3 · 1.5 H2O and Cs2CO3 · 3 H2O were prepared from aqueous solution and by means of the reaction of dialkylcarbonates with RbOH and CsOH resp. in hydrous alcoholes. Based on four‐circle diffractometer data, the crystal structures were determined (Rb2CO3 · 1.5 H2O: C2/c (no. 15), Z = 8, a = 1237.7(2) pm, b = 1385.94(7) pm, c = 747.7(4) pm, β = 120.133(8)°, VEZ = 1109.3(6) · 106 pm3; Cs2CO3 · 3 H2O: P2/c (no. 13), Z = 2, a = 654.5(2) pm, b = 679.06(6) pm, c = 886.4(2) pm, β = 90.708(14)°, VEZ = 393.9(2) · 106 pm3). Rb2CO3 · 1.5 H2O is isostructural with K2CO3 · 1.5 H2O. In case of Cs2CO3 · 3 H2O no comparable structure is known. Both structures show [(CO32–)(H2O)]‐chains, being connected via additional H2O forming columns (Rb2CO3 · 1.5 H2O) and layers (Cs2CO3 · 3 H2O), respectively.  相似文献   

11.
Rb3LnCl6 · 2 H2O (Ln = La? Nd): Preparation, Crystal Structure, and Thermal Behaviour The compounds Rb3LnCl6 · 2 H2O (Ln = La? Nd) were prepared from acetic acid as powders. The preparation from aqueous solutions does not yield the pure products because RbCl precipitates as first compound. The structure of Rb3LaCl6 · 2 H2O was determined by X-ray analysis of a single crystal obtained from aqueous solution. The compounds with Ln = La? Nd are isotypic. They crystallize hexagonally in the space group P63/m (Rb3LaCl6 · 2 H2O: a = 1 220.4(2) pm, c = 1 688.6(3) (pm) with Z = 6. Anionic trimeric units [Ln3Cl12(H2O)6]3? are stacked along the c-axis over the corners of the unit cell. In the stacking frequency the units are rotated by 60° with respect to each other around the c-axis. The coordination number (C. N.) of Ln3+ is 8, which is satisfied by four bridging and two terminal chloride ions and two water molecules. The coordination spheres of the three rubidium ions in the different atomic positions are composed differently, their C.N. are 9, 8(+1) and 6(+6). The thermal dehydration of the compounds occurs in one step. The hydrates decompose at ca. 100°C to form the anhydrous compounds Rb2LnCl5 und RbCl since the anhydrous chlorides Rb3LnCl6 are thermodynamically stable above ca. 400°C only.  相似文献   

12.
Synthesis and Crystal Structure of Rb3PbCl5 The synthesis of the hitherto unknown compound Rb3PbCl5 in the quasi-binary system RbCl/PbCl2 and its structure determination is reported. This 3 : 1-phase decomposes peritectoidally at 305 °C and crystallizes in a so far unknown structure type in the orthorhombic space group Pnma (a = 863.498(5) pm, b = 1573.11(1) pm, c = 838.875(5) pm). It shows typical structural characteristics of ns2-configurated cations, although there are more noble gas-configurated cations than ns2-configurated cations in the structure.  相似文献   

13.
K2MCl5(M = La—Dy) and Rb2MCl5 (M = La—Eu): Ino-chlorides with Seven—Coordinated Rare Earths K2PrCl5 crystallizes with a = 1263.1(8), b = 875.6(3), c = 797.3(4) pm, Z = 4, orthorhombic, Pnma, isotypic to e. g. Y2HfS5. Monocapped trigonal prisms (C.N. = 7) are connected to chains via common edges in [010] direction according to [PrCl3/1tCl4/2k]2? with d?(Pr? Cl) = 281 pm. The chlorides K2MCl5 (M = La—Dy) and Rb2MCl5 (M = La—Eu) are isotypic to K2PrCl5. Thermal expansion of Rb2PrCl5 in [010] direction is remarkably smaller than parallel to (010).  相似文献   

14.
The Oxoantimonates(III) Rb2Sb8O13 and Cs8Sb22O37: New Framework and Layer Structures with ‘Lone‐Pair’ Cations The oxoantimonates(III) Rb2Sb8O13 and Cs8Sb22O37 were synthezised from Sb2O3, the elemental alkali metals (A) and the hyperoxides (AO2) at 500 °C. The crystal structures of Rb2Sb8O13 (monoclinic, P21/m, a=743.7(12)pm, b=1724(3)pm, c=1380(2)pm, β=90.44(4) °, Z=4) and Cs8Sb22O37 (monoclinic, Cc, a=1299.93(11)pm, b=719.87(6)pm, c=3089.9(3)pm, β=96.00(2) °, Z=2) exhibit complex layer (Rb) and framework oxoantimonate ions (Cs), with the SbIII cation, due to its stereochemically active ‘lone‐pair’, in ψ‐tetrahedral (CN=3) to ψ‐trigonal‐bipyramidal (CN=4) coordination by O.  相似文献   

15.
Single crystals of fluoride hydrates Mn3F8 · 12 H2O and AgMnF4 · 4 H2O have been prepared and characterized by X-ray methods. Mn3F8 · 12 H2O crystallizes in the space group P1 (a = 623.0(3), b = 896.7(4), c = 931.8(4) pm, α = 110.07(2)°, β = 103.18(2)°, γ = 107.54(2)°, Z = 1); AgMnF4 · 4 H2O crystallizes in the space group P21/m (a = 700.9(2), b = 726.1(1), c = 749.4(3) pm, β = 107.17(3)°, Z = 2). Both structures contain Jahn-Teller-distorted [Mn(H2O)2F4]? anions as well as crystal water molecules and exhibit a complex hydrogen bond network between anions and cations, i. e. [Mn(H2O)6]2+ for the first and a polymeric [Ag(H2O)2]? cation for the second compound.  相似文献   

16.
New Fluorozirconates and ‐hafnates with V2+ and Ti2+ During investigations of the systems MF2/KF/MF4 e. g. MF2/NaF/MF4 (M2+ = Ti2+, V2+, M4+ = Zr4+, Hf4+) we obtained blue crystals of VZrF6, VHfF6, KVZrF7, blue‐green crystals of NaVHf2F11, yellow crystals of TiHfF6 and NaTiHf2F11, and yellow to rubyred crystals of TiZrF6, respectively. According to single crystal data, VZrF6 VHfF6 and TiZrF6 crystalizes in the ordered ReO3‐type (cubic, Fm3m, a = 812,1(5), 804,2(8), and 821,0(2) pm, Z = 4). TiHfF6 crystalizes in a high‐temperature‐modification (cubic, ReO3‐type, Pm3m, a = 392,3(2) pm, Z = 2). KVZrF7 is isotyic to KPdZrF7 (orthorhombic, Pnna, a = 1109,8(6), b = 788,0(7), c = 648,0(15) pm, Z = 4). NaTiHf2F11 and NaVHf2F11 crystalizes monoclinic (C2/m, a = 910,5(7), b = 675,9(7), c = 773,6(5) pm, β = 116,10(6)° and a = 917,7(5), b = 685,7(5), c = 752,4 pm, β = 118,28(1)°, Z = 2, respectively) and are also isotypic to already known AgPdZr2F11.  相似文献   

17.
New Complex Fluorides with Ag2+ and Pd2+: NaMIIZr2F11 (MII = Ag, Pd) and AgPdZr2F11 For the first time single crystals of NaAgZr2F11, NaPdZr2F11 and AgPdZr2F11 have been obtained and investigated by X-ray methods. The isotypic compounds NaMIIZr2F11 (MII = Ag, Pd) crystallize triclinic, spcgr. P1 ? C (No. 2) with a = 780.9, b = 570.0, c = 583.2 pm, α = 106.1°, β = 112.2°, γ = 97.9° (NaPdZr2F11), AgPdZr2F11 is monoclinic, spcgr. C2/m? C2h (No. 12) with a = 935.1, b = 699.1, c = 780.1 pm, β = 115.7°, Z = 2 (Four circle diffractometer data, Siemens AED 2). Their structure is closeley related to the Ag3Hf2F14-type of structure.  相似文献   

18.
Rb5[SiO4][OH] crystallizes in the monoclinc space group C2/m with a = 737.3(1) pm, b = 1073.7(2) pm, c = 1207.2(2) pm, β = 106.07(2)° and Z = 4 (single crystal data; R1= 0.0681 all data). Layers of edge‐connected distorted trigonal prismatic [(OH)Rb6] entities and isolated tetrahedral [SiO4] units present the main structural features of this unprecedented structure type.  相似文献   

19.
Transition Metal Peroxofluoro Complexes. IV. Structural Chemistry of Diperoxo-tetrafluorotantalates (V): K3Ta(O2)2F4 and Related Phases and (NH4)3Ta(O2)2F4 Dependent on the preparative conditions K3Ta(O2)2F4 crystallizes in a monoclinic (a = 908.2(1), b = 899.2(1), c = 910.0(2) pm, β = 90.37(1)°) or — with variations in stoichiometry – in cubic phases (a = 905 to 909 pm) of the elpasolite type. The i.r. data as well as the thermal decomposition to tetragonal K3TaO2F4 (a = 621.0(2), c = 884.3(4) pm, with superstructure) with cis-standing O atoms indicate the cis-position also for the O2 groups. A single crystal X-ray structure analysis of (NH4)3Ta(O2)2F4 (space group Fm3m, a = 941.4(7) pm, Z = 4, Rw = 0.032) yielded disordered elpasolite structure. The [Ta(O2)2F4] octahedra have cis-configuration. No phase transition has been observed by X-rays when cooling down to 120 K.  相似文献   

20.
The First Hydrogencarbonates with a Trimeric [H2(CO3)3]4? Group: Preparation and Crystal Structure of Rb4H2(CO3)3 · H2O and K4H2(CO3)3 · 1.5 H2O Rb4H2(CO3)3 · H2O and K4H2(CO3)3 · 1,5 H2O were prepared by means of the reaction of (CH3)2CO3 with RbOH resp. KOH in aqueous methanole. Trimer [H2(CO3)3]4?-anions were found in the crystal structure of Rb4H2(CO3)3 · H2O (orthorhombic, Pnma (no. 62), a = 1 218.0(1) pm, b = 1 572.3(6) pm, c = 615.9(1) pm, VEZ = 1 179.5(5) · 106 pm3, Z = 4, R1(I ≥ 2σ(I)) = 0.027, wR2(I ≥ 2σ(I)) = 0.055). K4H2(CO3)3 · 1,5 H2O crystallizes in an OD-structure. The determined superposition structure (orthorhombic, Pbam (no. 55), a = 1 161.8(1) pm, b = 597.0(1) pm, c = 383.85(3) pm, VEZ = 266.3(1) · 106 pm3, Z = 1, R1(I ≥ 2σ(I)) = 0.035, wR2(I ≥ 2σ(I)) = 0.074) can be derived from the structure of the rubidium compound. The thermal decomposition of the substances is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号