首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Synthesis and Molecular Structure of [Al(SiMe3)3(DBU)] (DBU = 1,8-Diazabicyclo[5.4.0]undec-7-ene) [Al(SiMe3)3(OEt2)] reacts with DBU (DBU = 1,8-diazabicyclo[5.4.0]undec-7-ene) at 0 °C yielding [Al(SiMe3)3 · (DBU)] ( 1 ). 1 was characterised spectroscopically (1H, 13C, 29Si, 27Al NMR, IR, MS) and by X-ray structure determination [monoclinic, C2/c, a = 33.053(2), b = 9.307(1), c = 20.810(1) Å, β = 124.07(2)°, V = 5302.4(5) Å3, Z = 8, 218(2) K]. 1 does not react with [Cp2ZrCl2] even in boiling toluene.  相似文献   

2.
Photolysis of the halfsandwich tetracarbonylmetal complexes CpV(CO)4, Cp*V(CO)4 and Cp*Ta(CO)4 in solution in the presence of di(organyl)dichalcogenides E2R2 (E = S, Se, Te; R = Me, Ph, Fc) leads to diamagnetic doubly organochalcogenolato‐bridged compounds, [Cp()M(CO)2(μ‐ER)]2. According to the X‐ray structure determinations carried out for [CpV(CO)2(μ‐TeMe)]2, [Cp*V(CO)2(μ‐TePh)]2 and [Cp*Ta(CO)2(μ‐SPh)]2, the molecular framework consists of a folded M2(μ‐ER)2 ring with the cyclopentadienyl ligands in cis‐configuration and the organyl substituents R in a syn‐equatorial arrangement, thus forming a bowl‐shaped molecule with the four terminal CO ligands protruding into the inner sphere. The M…M distances (in the range between 305 and 330 pm) are not considered to indicate direct bonding interactions. The vanadium complexes [Cp()V(CO)2(μ‐ER)]2 are completely decarbonylated in the presence of an excess of E2R2 in boiling toluene, and in many cases the paramagnetic quadruply‐bridged products, [CpV(μ‐ER)2]2, can be isolated.  相似文献   

3.
The reaction of [Cp*MCl4] (M = Nb, Ta; Cp* = C5Me5) with PH2R in toluene at room temperature gives the primary phosphine complexes [Cp*MCl4(PH2R)] [Cp* = C5Me5; M = Nb: R = But ( 1a ), Ad ( 2a ), Cy ( 3a ), Ph ( 4a ), 2, 4, 6‐Me3C6H2 (Mes) ( 5a ); M = Ta: R = But ( 1b ), Ad ( 2b ), Cy ( 3b ), Ph ( 4b ), Mes ( 5b )] in high yield. 1—5 were characterized spectroscopically (NMR, IR, MS) and by crystal structure determinations. The starting material [Cp*TaCl4] is monomeric in the solid state, as shown by crystal structure determination.  相似文献   

4.
New Azido Complexes of Tantalum(V). Synthesis and Molecular Structure of the Dinuclear Compounds [Cp*TaCl(N3)(μ‐N3)]2(μ‐O) and [Cp*Ta(N3)3(μ‐N3)]2 (Cp* = Pentamethylcyclopentadienyl) The reaction of Cp*TaCl4 ( 1 ) with an excess of trimethylsilyl azide (Me3Si–N3) leads to azide‐rich dinuclear complexes which contain both terminal and bridging azido ligands. The oxo complex [Cp*TaCl(N3)(μ‐N3)]2(μ‐O) ( 4 ) was formed in dichloromethane in the presence of traces of water, whereas [Cp*Ta(N3)3(μ‐N3)]2 ( 5 ) was obtained from boiling toluene after several days. According to the X‐ray structure determinations the Ta…Ta distance in 4 (314,5 pm) is considerably shorter than in 5 (382,2 pm).  相似文献   

5.
Reactions of Cp*NbCl4 and Cp*TaCl4 with Trimethylsilyl‐azide, Me3Si‐N3. Molecular Structures of the Bis(azido)‐Oxo‐Bridged Complexes [Cp*NbCl(N3)(μ‐N3)]2(μ‐O) and [Cp*TaCl2(μ‐N3)]2(μ‐O) (Cp* = Pentamethylcyclopentadienyl) The chloro ligands in Cp*TaCl4 (1c) can be stepwise substituted for azido ligands by reactions with trimethylsilyl azide, Me3Si‐N3 (A) , to generate the complete series of the bis(azido)‐bridged dimers [Cp*TaCl3‐n(N3)n(μ‐N3)]2 ( n = 0 (2c) , n = 1 (3c) , n = 2 (4c) and n = 3 (5c) ). If the solvent CH2Cl2 contains traces of water, an additional oxo bridge is incorporated to give [Cp*‐TaCl2(μ‐N3)]2(μ‐O) (6c) or [Cp*TaCl(N3)(μ‐N3)]2(μ‐O) (7c) , respectively. Both 6c and 7c are also formed in stoichiometric reactions from [Cp*TaCl2(μ‐OH)]2(μ‐O) (8c) and A . Analogous reactions of Cp*NbCl4 (1b) with A were used to prepare the azide‐rich dinuclear products [Cp*NbCl3‐n(N3)n(μ‐N3)]2 (n = 2 (4b) , and n = 3 (5b) ), and [Cp*NbCl(N3)(μ‐N3)]2(μ‐O) (7b) . The mononuclear complex Cp*Ta(N3)Me3 (10c) is obtained from Cp*Ta(Cl)Me3 and A . All azido complexes were characterised by their IR as well as their 1H and 13C NMR spectra; X‐ray crystal structure analyses are available for 6c and 7b .  相似文献   

6.
Investigations of the Synthesis of [CpxSb{M(CO)5}2] (Cpx = Cp, Cp*; M = Cr, W) The reaction of CpSbCl2 with [Na2{Cr2(CO)10}] leads to the chlorostibinidene complex [ClSb{Cr(CO)5}2(thf)] ( 1 ), whereas the reaction of CpSbCl2 with [Na2{W2(CO)10}] results in the formation of the complexes [ClSb{W(CO)5}3] ( 2 ), [Na(thf)][Cl2Sb{W(CO)5}2] ( 3 ), [ClSb{W(CO)5}2(thf)] ( 4 ) and [Sb2{W(CO)5}3] ( 5 ). The stibinidene complex [CpSb{Cr(CO)5}2] ( 6 ) is obtained by the reaction of [ClSb{Cr(CO)5}2] with NaCp, while its Cp* analogue [Cp*Sb{Cr(CO)5}2] ( 7 ) is formed via the metathesis of Cp*SbCl2 with [Na2{Cr2(CO)10}]. The products 2 , 3 , 4 and 7 are additionally characterised by X‐ray structure analyses.  相似文献   

7.
Molecular and Crystal Structure of Bis[chloro(μ‐phenylimido)(η5‐pentamethylcyclopentadienyl)tantalum(IV)](Ta–Ta), [{TaCl(μ‐NPh)Cp*}2] Despite the steric hindrance of the central atom in [TaCl2(NPh)Cp*] (Ph = C6H5, Cp* = η5‐C5(CH3)5), caused by the Cp* ligand, the imido‐ligand takes a change in bond structure when this educt is reduced to the binuclear complex [{TaCl(μ‐NPh)Cp*}2] in which tantalum is stabilized in the unusual oxidation state +4.  相似文献   

8.
1,8‐Diazabicyclo[5.4.0]undec‐7‐ene (DBU) reacted with benzyl halides in CH2Cl2/H2O 1 : 1 (v/v) to afford a mixture of eleven‐membered cyclic amide 1 and seven‐membered cyclic amide 2 . When the reaction was carried out in EtOH/H2O 1 : 1 (v/v), product 2 was obtained as the major product. 1,5‐Diazabicyclo[4.3.0]non‐5‐ene (DBN) gave the five‐membered cyclic amide 3 as the sole product under the same reaction conditions.  相似文献   

9.
10.
The title compound [La(phen)2(H2O)2(NO3)2](NO3) · 2(phen)(H2O) with phen = 1,10‐phenanthroline was prepared by the stoichiometric reaction of La(NO3)3 · 6 H2O and 1,10‐phenanthroline monohydrate in a CH3OH–H2O solution. The crystal structure (triclinic, P 1 (no. 2), a = 11.052(2), b = 13.420(2), c = 16.300(2) Å, α = 78.12(1)°, β = 88.77(1)°, γ = 83.03(1)°, Z = 2, R = 0.0488, wR2 = 0.1028) consists of [La(phen)2(H2O)2(NO3)2]2+ complex cations, NO3 anions, phen and H2O molecules. The La atom is 10‐fold coordinated by four N atoms of two bidentate chelating phen ligands and six O atoms of two H2O molecules and two bidentate chelating NO32– ligands with d(La–O) = 2.522–2.640 Å and d(La–N) = 2.689–2.738 Å. The intermolecular π‐π stacking interactions play an essential role in the formation of two different 2 D layers parallel to (001), which are formed by complex cations and uncoordinating phen molecules, respectively. The uncoordinated NO3 anions and H2O molecules are sandwiched between the cationic and phen layers.  相似文献   

11.
12.
The complexes [Ag(η2‐N∧S)2](PF6), N∧S = 1‐methyl‐2‐(methylthiomethyl)‐1H‐benzimidazole, mmb (complex 1 ) or 1‐methyl‐2‐(tert‐butylthiomethyl)‐1H‐benzimidazole, mtb (complex 2 ), and [Ag(μ,η2‐mmb)(μ,η2‐O2PF2)] (complex 3 ) were synthesized and characterized by X‐ray crystallography. Long Ag–S (ca. 2.70 Å) and shorter Ag–N bonds (ca. 2.23 Å) are part of characteristically distorted tetrahedral coordination arrangements at the silver(I) ions in 1 and 2 . Unexpectedly, the comparison with the copper analogue [Cu(η2‐mmb)2](PF6) reveals a more tetrahedral and less linear coordination arrangement for the corresponding silver species. Compound 3 as obtained by hydrolysis of the PF6 ion or by the use of AgPO2F2 exhibits bridging mmb and η2‐difluorophosphate ligands in a chain‐type structure.  相似文献   

13.
Tetranuclear Cluster Complexes of the Type [MM′(AuR3)2(μ‐H)(μ‐PCy2)(μ4‐PCy)(CO)6] (M,M′ = Mn, Re; R = Ph, Cy, Et): Synthesis, Structure, and Topomerisation The dirhenium complex [Re2(μ‐H)(μ‐PCy2)(CO)7(ax‐H2PCy)] ( 1 ) reacts at room temperature in thf solution with each two equivalents of the base DBU and of ClAuPR3 (R = Ph, Cy, Et) in a photochemical reaction process to afford the tetranuclear clusters [Re2(AuPR3)2(μ‐H)(μ‐PCy2)(μ4‐PCy)(CO)6] (R = Ph ( 2 ), Cy ( 3 ), Et ( 4 )) in yields of 35–48%. The homologue [Mn2(μ‐H)(μ‐PCy2)(CO)7(ax‐H2PCy)] ( 5 ) leads under the same reaction conditions to the corresponding products [Mn2(AuPR3)2(μ‐H)(μ‐PCy2)(μ4‐PCy)(CO)6] (R = Ph ( 6 ), Et ( 8 )). Also [MnRe(μ‐H)(μ‐PCy2)(CO)7(ax/eq‐H2PCy)] ( 9 ) reacts under formation of [MnRe(AuPR3)2(μ‐H)(μ‐PCy2)(μ4‐PCy)(CO)6] (R = Ph ( 10 ), Et ( 11 )). All new cluster complexes were identified by means of 1H‐NMR, 31P‐NMR and ν(CO)‐IR spectroscopic measurements. 2 , 4 and 10 have also been characterized by single crystal X‐ray structure analyses with crystal parameters: 2 triclinic, space group P 1, a = 12.256(4) Å, b = 12.326(4) Å, c = 24.200(6) Å, α = 83.77(2)°, β = 78.43(2)°, γ = 68.76(2)°, Z = 2; 4 monoclinic, space group C2/c, a = 12.851(3) Å, b = 18.369(3) Å, c = 40.966(8) Å, β = 94.22(1)°, Z = 8; 10 triclinic, space group P 1, a = 12.083(1) Å, b = 12.185(2) Å, c = 24.017(6) Å, α = 83.49(29)°, β = 78.54(2)°, γ = 69.15(2)°, Z = 2. The trapezoid arrangement of the metal atoms in 2 and 4 show in the solid structure trans‐positioned an open and a closed Re…Au edge. In solution these edges are equivalent and, on the 31P NMR time scale, represent two fluxional Re–Au bonds in the course of a topomerization process. Corresponding dynamic properties were observed for the dimanganese compounds 6 and 8 but not for the related MnRe clusters 10 and 11 . 2 and 4 are the first examples of cluster compounds with a permanent Re–Au bond valence isomerization.  相似文献   

14.
The synthesis of alcohol ester 12 is one of the valuable industrial processes, but it was impeded by poor separating property and recycling ability of the catalytic systems. Herein, four novel DBU‐based basic ionic liquids (DBILs) of [BDBU]IM, [BDBU]OH, [ODBU]IM, [[ODBU]OH were synthesized successfully by introducing the alkyl chains of 1‐bromobutane or 1‐bromooctane to 1,8‐diazabicyclo [5.4.0] undec‐7‐ene (DBU), and then, employing imidazole (IM?) or hydroxide (OH?) as counter ions. The above obtained four ionic liquids were applied in the synthesis of alcohol ester 12 in isobutyraldehyde (IBD)/aqueous media for the first time. Interestingly, after reaction, production of alcohol ester 12 can be self‐separated from ionic liquids/water (ILs/W) catalytic system automatically. Furthermore, the self‐separated ILs/W can be recycled and used in next catalytic reaction for at least 5 times without obvious loss of catalytic performance. In this work, the structure, purity, thermal stability and alkalinity of DBILs were characterized systematically. [BDBU]IM shows high alkalinity and thus enhances yield of 66.17%. From thermo gravimetric analyzer (TGA), [BDBU]IM also exhibits excellent thermal stability. So [BDBU]IM was chosen for the further studying. Furthermore, quantum chemistry is applied to calculate the interaction forces and electron energies of reactants by DFT, and the calculation results illustrate the feasibility of synthetic process of DBILs. The self‐separation strategy of DBILS in this work may open up a new avenue for the clean synthesis of other industrial products.  相似文献   

15.
Pyridine Complexes of Rare Earth Element Trichlorides. Syntheses and Crystal Structures of [YCl3(py)4] and [LnCl3(py)4] · 0.5 py with Ln = La and Er The pyridine complexes [YCl3(py)4] ( 1 ), [LaCl3(py)4] · 0.5 py ( 2 · 0.5 py), and [ErCl3(py)4] · 0.5 py ( 3 · 0.5 py) have been prepared from the diacetone‐alcohol complexes [LnCl3(DAA)2] or directly from the metal trichlorides with excess pyridine to give colourless, only sparingly moisture sensitive crystals. They were characterized by IR spectroscopy and by crystal structure determinations. 1 : Space group Pbca, Z = 16, lattice dimensions at –80 °C: a = 1647.4(1), b = 1743.1(1), c = 3190.5(1) pm, R1 = 0.031. 2 · 0,5 Py: Space group P21/n, Z = 4, lattice dimensions at –80 °C: a = 978.9(1), b = 1704.5(1), c = 1589.5(1) pm, β = 103.61(1)°, R1 = 0.0281. 3 · 0,5 Py: Space group P21/n, Z = 4, lattice dimensions at –80 °C: a = 970.1(1), b = 1706.4(1), c = 1566.1(1) pm, β = 103.46(1)°, R1 = 0.0232. All complexes realize monomeric molecular structures with the metal atom in a distorted pentagonal‐bipyramidal coordination. One of the chlorine atoms and the four pyridine molecules are in the equatorial plane.  相似文献   

16.
Synthesis and Crystal Structure of meso-(1,2,3-Tricyclohexyltriphosphane-1,3-diyl)zirconocene(IV), Cp2 (Cp = η5?C5H5, Cy = C6H11) Cp2ZrCl2 reacts with Li(THF)2PHCy (Cy = C6H11) to yield the metallacyclic compound Cp2 1. , The 31P{1H} NMR spectrum of 1 , shows a coupling pattern for an A2X system, indicating the presence of only the meso-forms in solution, which are also present in the solid state. 1 , crystallizes in the monoclinic space group P21/n (No. 14) with a = 12.984(8), b = 9.241(7), c = 23.05(1) Å, β = 93.48(4)°, V = 2760.1 Å3 and four formula units in the unit cell (2718 independent observed reflections, R = 7.3%). The central ZrP3 ring in 1 , is almost planar. The Zr? P bond lengths of 2.618(4) and 2.628(4) Å are nearly identical.  相似文献   

17.
Synthesis and Molecular Structure of [{Cp′(μ‐η1 : η5‐C5H3Me)Mo(μ‐AlRH)}2] (Cp′ = C5H4Me, R = iBu, Et) [Cp′2MoH2] reacts with HAlR2 to give [{Cp′(μ‐η1 : η5‐C5H3Me)Mo(μ‐AlRH)}2] (Cp′ = C5H4Me, R = iBu ( 1 ), Et ( 2 )). Crystal structure determinations were carried out on [Cp′2MoH2] and 1 . 1 exhibits a direct Mo–Al bond (2.636(2) Å).  相似文献   

18.
Reactions of the Dielement Compounds R2E–ER2 [E = Ga, In; R = CH(SiMe3)2] with Lithium Phenylethynide – Formation of Adducts by Retention of the E–E Bonds Lithium phenylethynide reacted with the dielement compounds tetrakis[bis(trimethylsilyl)methyl]digallane(4) ( 2 ) and diindane(4) ( 3 ) as a Lewis‐base and gave by the addition of one ethynido ligand to one of the Lewis‐acidic central atoms the anionic adducts 4 and 5 with intact Ga–Ga and In–In single bonds. Thus, compounds were formed, in which tricoordinated, coordinatively unsaturated Ga or In atoms are neighbored to tetracoordinated, coordinatively saturated ones. The E–E bonds [255.83 pm in 4 (Ga–Ga) and 285.24 pm in 5 (In–In)] are only slightly lengthened compared to those of the starting compounds 2 and 3 . A dynamic behavior with a fast change of the position of the ethynido ligand was observed for both compounds in solution at room temperature.  相似文献   

19.
The title compound [Cu2(phen)2(C9H14O4)2] · 6 H2O was prepared by the reaction of CuCl2 · 2 H2O, 1,10‐phenanthroline (phen), azelaic acid and Na2CO3 in a CH3OH/H2O solution. The crystal structure (monoclinic, C2/c (no. 15), a = 22.346(3), b = 11.862(1), c = 17.989(3) Å, β = 91.71(1)°, Z = 4, R = 0.0473, wR2 = 0.1344 for 4279 observed reflections) consists of centrosymmetric dinuclear [Cu2(phen)2(C9H14O4)2] complexes and hydrogen bonded H2O molecules. The Cu atom is square‐planar coordinated by the two N atoms of the chelating phen ligand and two O atoms of different bidentate bridging azelaate groups with d(Cu–N) = 2.053, 2.122(2) Å and d(Cu–O) = 1.948(2), 2.031(2) Å. Two azelaate anions bridge two common Cu atoms via the terminal O atoms (d(C–O) = 1.29(2) Å; d(C–C) = 1.550(4)–1.583(4) Å). Phen ligands of adjacent complexes cover each other at distances of about 3.62 Å, indicating π‐π stacking interaction, by which the complexes are linked to 1 D bands.  相似文献   

20.
The reaction of CpFe(CO)2X (X = Cl, Br, I) with SbY5 (Y = F, Cl) in toluene leads to the cationic, halogen‐bridged compounds [{Cp(CO)2Fe}2X]SbY6 ( 1 – 6 ). The halide of CpFe(CO)2X is eliminated by the Lewis acid SbY5, and the fragment “CpFe(CO)2+” reacts with further CpFe(CO)2X to form the halogen bridge between both the organometallic substituents. The exclusive formation of the counter anion SbY6 is caused by the oxidizing action of the antimony pentahalides, by which SbY3 and the interhalogens XY are always obtained. The compounds have been characterized by their NMR‐, IR‐ and Mass spectra, the compounds 1 – 3 and 6 additionally by single crystal structure analyses. They show decreasing bond angles Fe–X–Fe following the range Cl → Br → I and the VSEPR concept; the two CpFe(CO)2 groups are staggered with the dihedral angle Cp(centre)–Fe–Fe–Cp(centre) of about 160°.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号