首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To explore the possible applications of hyperbranched polymers for modifying linear polyamides, two hyperbranched aromatic polyesters characterized as high Tg polymers possessing phenolic end groups were used in melt mixing with partly aromatic polyamide and commercially available aliphatic polyamide‐6, respectively. Different amounts of both hyperbranched polyesters (from 1 wt % up to 20 wt %) were added to the polyamides, and the influence of these hyperbranched polyesters on the properties of the polyamides was investigated. The hyperbranched polyester based on an AB2 approach was found to be the most effective modifier. A significant increase of the glass transition temperature of the final blend was detected. However, a remarkable reduction of crystallinity as well as complex melt viscosity of those blends was also observed. The use of an A2+B3 hyperbranched polyester as melt modifier for the polyamides was less effective for changing the thermal properties, and the complex melt viscosity of the final material increased since heterogeneous blends were formed. In contrast to that, generally, the addition of the AB2 hyperbranched polyester to the polyamides resulted in homogeneous blends with improved Tg and processability. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 3558–3572, 2009  相似文献   

2.
When engineers design high-performance precision products made from plastics, they demand that the plastic materials should approach or even surpass conventional structural materials, particularly in areas such as modulus, strength, creep resistance, lubricity, thermal expansion, high-temperature properties, heat aging, and high-frequency dielectric loss. In response to these demands, polymer chemists have developed a series of high-performance “engineering” thermoplastics offering a wide variety of choice in balance of important engineering properties. These include the fluoroplastics, aliphatic and aromatic polyethers, polyacetals, polysulfones, aromatic polyesters, and aliphatic and aromatic polyamides.  相似文献   

3.
端基对超支化高分子性质影响的研究   总被引:7,自引:1,他引:7  
对端羟基脂肪族超支化高分子的端基进行了乙酰化和硅烷化改性,研究了不同端基对超支化高分子的玻璃化温度,折光指数增量以及特性粘度的影响。结果表明,端基的极性减小使超支化高分子的玻璃化温度降低,不同端基的超支化高分子的折光指数增量也有很大差异,而强极性的端基使超支化高分子在溶液中易产生团聚作用。由于端基在超支化高分子中所占比重较大,端基是影响超支化高分子性质的重要因素。  相似文献   

4.
Thin films of hyperbranched polyesters were studied in dry state and in aqueous buffer solution regarding their swelling behaviour and protein adsorption potential. The influence of the degree of branching, the backbone structure, flexibility as well as the polarity was varied. By changing the backbone structure from aromatic, aromatic–aliphatic to aliphatic the surface properties can be controlled from protein active to protein repelling. The higher adsorption potential observed in comparison to linear polyesters is the result of the large amount of end groups allowing the formation of hydrogen bonds, and the larger swellability of the more flexible linear polymers. The protein adsorption process was studied intensively by in-situ spectroscopic ellipsometry. Different approaches towards a proper optical model for the vis-ellipsometry data evaluation for the determination of the correct layer thickness and refractive index are discussed. IR-ellipsometric measurements using a new in-situ cell gave the full chemical evidence for the formation of thin protein adsorption layer on the polymer films in the aqueous buffer environment.  相似文献   

5.
Silicon-containing polyamides and polyesters of a new type have been synthesized. They contain phenoxasilin rings with double-stranded structure. The polymers were synthesized by the interfacial polycondensation of 2,8-dichloroformyl-10,10-diphenylphenoxasilin with diamines and bisphenols, and were obtained in nearly quantitative yields. Their reduced viscosities were in the range of 0.53–1.47 dl g?1 m dimethylformamide (DMF), m-cresol or chloroform. Some of the polyamides were soluble in polar aprotic solvents such as DMF and N-methyl-2-pyrrolidone (NMP) and the polyesters had good solubility in chloroform, phenol-sym tetrachloroethane (60:40 by wt %) and acidic solvents (m-cresol and nitrobenzene). The polymers hardly dissolved in cone. H2SO4 and some of them coloured in it. Only the polyester having sulphide bonds was soluble in benzene in addition to the above organic solvents. These polymers hardly degraded below 400° except for the polyamides derived from aliphatic diamines. The polymers from aliphatic diamines melted at 290–325°; the other polyamides and the polyesters decomposed without melting.  相似文献   

6.
Polyamides and polyesters having various functional groups have been synthesized either by the polycondensation of functional monomers having a high reactivity or by the modification of unsaturated polymers by means of suitable polymer reactions. Polyamides or polyesters having hydrophilic groups such as hydroxyl group have a high affinity for moisture adsorption and are applicable to membrane uses. Photosensitive polyamides or polyesters were also prepared.  相似文献   

7.
脂肪族聚酯-酰胺(polyester-amides)合了聚酯和聚酰胺的优点,如具有优良的物理力学性能和加工性能等等。因此,对脂肪族聚酯-酰胺的研究成为近年来的研究热点。本文从脂肪族聚酯-酰胺的模型化合物(以双酰胺-二醇单体为例)的研究进展入手,分析了模型化合物的结构特点,以及模型化合物与相应聚合物之间的联系,从而为进一步研究聚合物打下一定的基础。本文还综述了脂肪族聚酯-酰胺的分类,各类脂肪族聚酯-酰胺的合成方法,以及脂肪族聚酯一酰胺在可生物降解材料和热塑性弹性体等领域的应用。  相似文献   

8.
脂肪族聚酯及共聚酯的生物降解性研究   总被引:11,自引:1,他引:11  
以酯交换法或直接缩聚法合成了一系列脂肪族聚酯,经二异氰酸酯(HDI)扩链得到含氨酯键的聚酯及共聚酯,用DSC、X射线衍射等分析表征了聚酯及共聚物的结构和性能。用土埋试验、CO2释放试验和黑曲霉降解试验着重研究了这些聚合物的生物降解性,详细讨论了聚酯结构、组成及聚酯分子量对生物降解性的影响。  相似文献   

9.
A Phenazasiline ring was incorporated into a polymer backbone by polycondensation of 2,8-dichloroformyl-5,10-dihydro-5-methyl-10,10-diphenylphenazasiline (V) with aromatic diamines or bisphenols, and phenazasiline-containing polyamides and polyesters were obtained. The polyamides were prepared by low-temperature solution polycondensation in N-methyl-2-pyrrolidone (NMP) in the presence of lithium chloride. The polyesters were synthesized by interfacial polycondensation in a mixture of 1,2-dichloroethane and aqueous alkali in the presence of tetrabutylammonium chloride as an accelerator. These reaction conditions gave the corresponding polymers with high viscosities. The phenazasiline-containing polyamides exhibited good solubilities in polar aprotic solvents such as dimethylformamide, dimethylacetamide, and NMP, and also in m-cresol, although the polyesters showed limited solubilities in organic solvents. Under nitrogen, the phenazasiline-containing polyamides and polyesters showed little degradation below 400°C and had good heat resistance.  相似文献   

10.
Highly branched polyphenylenes, polyphenylene ethers, aromatic polyesters and polyamides synthesized from AB2 type monomers are reviewed. Polyphenylenes were obtained by aryl-aryl coupling reactions of 3,5-dihalo-phenyl organometallic reagents. 13C NMR indicates about 70% branching efficiency. A Tgat 236°C was observed, but the polymer did not form films. Polyethers were prepared by oxidative coupling of 2,4,6-tribromophenol and 2,4-dibromophenol. The former monomer gave high molecular weight polymers but the latter monomer did not polymerize well. Condensation of 3,5-diaminobenzoic acid (I) and 3-aminoisophthalic acid derivatives in an amide solvent gave lyotropic hyperbranched aromatic polyamides. The GPC indicated a large degree of polymer aggregation in the amide solvent in the absence of a complexing salt.  相似文献   

11.
12.
In advance of a discussion on structural effects on biodegradation, aliphatic polyesters as biodegradable structural materials were classified into four types regarding chemical structure, that is poly(ω-hydroxy acid), poly(β-hydroxyalkanoate), poly(ω-hydroxyalkanoate) and poly(alkylene dicarboxylate), and reviewed on synthesis route, thermal and physical properties, and biodegradability. The biodegradation mechanism of these aliphatic polyesters were discussed on the major mode of hydrolysis reaction in regard whether it was enzyme-catalyzed or not, and the substrate specificities of enzymes, such as lipases or PHA depolymerases, were discussed on the hydrolysis of the aliphatic polyesters in respect of primary structure. Moreover, the biodegradation behaviors were exceedingly influenced by solid-state morphology in addition to primary structure. The rate of enzymatic degradation of polycaprolactone fibers drawn with various draw ratios was dependent on draw ratios, suggesting that crystallinity and orientation of them affected biodegradability by lipase. In the study of enzymatic degradation of films made from butylene succinate – ethylene succinate copolymer, the dependence of degradation rate on polymeric compositions was ascribed to the degree of crystallinity rather than the primary structure. These studies revealed that the degree of crystallinity was the major rate-determining factor of biodegradation of solid polymers. © 1997 John Wiley & Sons, Ltd.  相似文献   

13.
The phase behavior of blends of tetramethyl bisphenol-A polyarylate (TMPAr) with various linear aliphatic polyesters characterized by the ratio of aliphatic carbons to ester groups in the repeating unit, CH2/COO = 3 ∼ 9, was examined by differential scanning calorimetry and dynamic mechanical analysis. TMPAr/aliphatic polyester blends prepared by solvent casting were found to be miscible when the CH2/COO ratio of aliphatic polyesters was larger than 4 and up to 9. The thermodynamic interaction parameter, B for the miscible blends was determined by the analysis of the depression of the melting point of polyester using the Hoffman-Weeks method. From the analysis of the heat of mixing data using a binary interaction model, it was concluded that strong unfavorable intramolecular interaction exists between the  CH2 and  COO units in aliphatic polyesters and that four substituted methyl groups produces more favorable effects on the miscibility TMPAr with aliphatic polyesters. © 1998 John Wiley & Sons, Inc. J Polym Sci 36 : 201–212, 1998  相似文献   

14.
以三羟甲基丙烷(TMP)为核,二羟甲基丙酸(DMPA)为支化单体,通过熔融缩聚法合成了第3代端羟基脂肪族超支化聚酯,并用十八酸对其进行端基改性,采用广角X射线衍射(WAXD)、示差扫描量热分析(DSC)及红外光谱(FTIR)研究了不同端基改性程度的超支化聚酯的结晶熔融行为及端烷烃链的构象和堆积结构随温度的变化,采用旋转流变仪研究了端烷烃链对脂肪族超支化聚酯熔体动态黏弹行为的影响.结果表明,这类改性超支化聚酯的结晶归因于长链端烷烃的有序排列,改性程度越高,衍射峰强度越大.受限结晶的端烷烃链在升温后并不能完全转变为无序的结构状态,改性超支化聚酯在"熔点"以上仍有部分有序结构存在.超支化聚酯的线性黏弹区随着端基改性程度的增大而逐渐变短,超支化聚酯的弹性逐渐增大,剪切变稀越明显.动态流变测试中所出现的现象与改性超支化聚酯中端烷烃链的受限密切相关.  相似文献   

15.
A series of 2,2‐bis(hydroxymethyl)propionic acid (Bis‐MPA) hyperbranched aliphatic polyesters with different molecular weights (generations) is analysed for the first time by time‐of‐flight secondary ion mass spectrometry (ToF‐SIMS). The main negative and positive low‐mass fragments are identified in the fingerprint part of the spectra (m/z < 400) and are principally assigned to fragmentation of the Bis‐MPA repeating units. In addition, it is shown that the fragmentation pattern is highly affected by the functional end‐groups. This is illustrated for a phthalic acid end‐capped hyperbranched polymer and for an acetonide‐terminated dendrimer analog. Also, typical fragments assigned to the ethoxylated pentaerythritol core molecule are detected. These ions show decreasing intensities with increasing molecular weight. This intensity dependency on the generation is used to calibrate the molecular weight of hyperbranched polyesters on the surface. To obtain quantitative information, a principal component analysis (PCA) multivariate statistical method is applied to the ToF‐SIMS data. The influence of different normalization procedures prior to PCA calculation is tested, e.g. normalization to the total intensity, to the intensities of ions assigned to the Bis‐MPA repeating unit or to intensities of fragments due to the core molecule. It is shown that only one principal component (PC1) is needed to describe most of the variance between the samples. In addition, PC1 takes into account the generation effect. However, different relationships between the PC1 scores and the hyperbranched mass average molecular weights are observed depending on the normalization procedure used. Normalization of data set ion intensities by ion intensities from the core molecule allows linearization of the SIMS intensities versus the molecular weight and allows the hyperbranched polymers to be discriminated up to the highest generations. In addition, PCA applied to ToF‐SIMS data provides an extended interpretation of the spectra leading to further identification of the correlated mass peaks, such as those of the Bis‐MPA repeating unit (terminal, dendritic and linear) and those of the core molecule. Finally, the work presented demonstrates the extreme potential of the static ToF‐SIMS and PCA techniques in the analysis of dendritic molecules on solid surfaces. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

16.
汤为  侯健  颜备岳 《化学学报》2003,61(8):1299-1304
合成了一系列含羟基和乙酰氧基的超支化聚酯,将4',4'二羟基-2-甲酸-三 苯基甲烷(酚酞啉)直接缩聚和将4~',4~"-二羟基-2-甲酸-三苯基甲烷进行酯 交换反应都成功得到了超支化聚酯,以PS作标准物,由GPC测得的重均分子量为 2000到8000,~13C NMR测试表明聚合物支化度略高于50%,聚酯的玻璃化转变温度 依赖于末端和侧基官能团类型,该超支化聚酯末端含有反应性官能团,具有类似线 性高分子的高的热稳定性,相比之下,由于其大分子的形状和官能团的影响,末端 为乙酰氧基的超支化聚枉费显示了优良的溶解性能,这与一般线性高分子大不相同 ,由于氢键的存在,末端为羟基的超支化聚酯的溶解性能不佳,但是酸酯显示了 优良的溶解性能,这与一般线性高分子大不相同,由于氢键的存在,末端为羟基的 超支化聚枉费的溶解性能不佳,但是酸化可破坏氢键网络,得到的超支化聚酯可深 于一般有机溶剂。  相似文献   

17.
Hyperbranched polyesters are among the most common hyperbranched polymers. One of the interesting features of hyperbranched polyesters is that they contain unreacted hydroxyl and carboxylic acid groups at the linear and terminal structural units, which can be postmodified to adjust thermal, solubility, or mechanical properties, or to prepare core–shell type architectures. This article reports on the synthesis of a novel class of hyperbranched polyesters via an A2 + B3 type Baylis–Hillman polymerization of 2,6‐pyridinedicarboxaldehyde and trimethylolpropane triacrylate. Baylis–Hillman polymerization generates highly functional polyesters that contain not only unreacted aldehyde and/or acrylate groups at the linear and terminal structural units but also chemically orthogonal vinyl and hydroxyl groups along the polymer backbone. Using 3‐hydroxyquinuclidine as the catalyst, hyperbranched polymers with number‐average molecular weights up to 7500 g/mol and degrees of branching up to 0.81 were obtained. To demonstrate the versatility of these hyperbranched polyesters to act as platforms for further derivatization, the orthogonal postpolymerization modification of the hydroxyl, vinyl, and pyridine functional moieties with phenyl isocyanate, methyl‐3‐mercaptopropionate, and methyl iodide is presented. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012.  相似文献   

18.
The Milstein catalyst has proven to be highly effective for the conversion of alcohols to esters, as well as alcohols and amines to amides and polyamides. We have recently found that the catalyst's range can be extended to very efficient in vacuo dehydrogenation polymerization of α,ω‐diols to generate polyesters. The gaseous hydrogen byproduct that is produced is easily removed to drive the equilibrium toward product, which leads to the formation of high molecular weight polymer ( up to 145 000 g mol−1). This optimized methodology works well to polymerize diols with a spacer of six carbons or more. Diols with fewer carbons are cyclized to lactone; the dividing point is the dehydrogenation of 1,5‐pentanediol, which leads to a mixture of polyester and lactone. Reported herein is the synthesis and characterization of five aliphatic polyesters prepared via this novel dehydrogenation polymerization approach.  相似文献   

19.
<正>Aromatic/aliphatic polyamides were synthesized from a diamine monomer,2,3-bis-p-aminophenylquinoxaline (Ⅳ),based on quinoxaline and various dicarboxylic acids of aliphatic,aromatic and heterocyclic.The diamine and polyamides were characterized by elemental analysis,FTIR and ~1H-NMR.The solubility of the polyamides was affected by the quinoxaline and heterocyclic groups in the polymer chain.They were all soluble in common organic solvents such as dimethylsulfoxide(DMSO),N,N-dimethylformamide(DMF) and N-methylpyrolidone(NMP).The polyamides showed inherent viscosity in the range of 0.25-0.3 dL/g in DMSO at 25℃and good thermal stability with the char yields in the range of 65%-82%at 600℃in nitrogen.  相似文献   

20.
New, bifunctional, bridgehead-substituted triptycenes were synthesized and used to prepare a series of triptycene polymers, including polyesters, polyamides, polyurethanes, and a polyoxadiazole. Certain of these partially aliphatic polymers were thermally stable. Clear and colorless films were obtained in some instances.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号