首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Zintl phase Ba3Si4 has been synthesized from the elements at 1273 K as a single phase. No homogeneity range has been found. The compound decomposes peritectically at 1307(5) K to BaSi2 and melt. The butterfly‐shaped Si46− Zintl anion in the crystal structure of Ba3Si4 (Pearson symbol tP28, space group P42/mnm, a = 8.5233(3) Å, c = 11.8322(6) Å) shows only slightly different Si‐Si bond lengths of d(Si–Si) = 2.4183(6) Å (1×) and 2.4254(3) Å (4×). The compound is diamagnetic with χ ≈ −50 × 10−6 cm3 mol−1. DC resistivity measurements show a high electrical resistivity (ρ(300 K) ≈ 1.2 × 10−3 Ω m) with positive temperature gradient dρ/dT. The temperature dependence of the isotropic signal shift and the spin‐lattice relaxation times in 29Si NMR spectroscopy confirms the metallic behavior. The experimental results are in accordance with the calculated electronic band structure, which indicates a metal with a low density of states at the Fermi level. The electron localization function (ELF) is used for analysis of chemical bonding. The reaction of solid Ba3Si4 with gaseous HCl leads to the oxidation of the Si46− Zintl anion and yields nanoporous silicon.  相似文献   

2.
The binary silicides Eu5Si3 and Yb3Si5 were prepared from the elements in sealed tantalum tubes and their crystal structures were determined from single crystal X-ray data: I4/mcm, a = 791.88(7) pm, c = 1532.2(2) pm, Z = 4, wR2 = 0.0545, 600 F2 values, 16 variables for Eu5Si3 (Cr5B3-type) and P62m, a = 650.8(2) pm, c = 409.2(1) pm, Z = 1, wR2 = 0.0427, 375 F2 values, 12 variables for Yb3Si5 (Th3Pd5 type). The new silicide Eu5Si3 contains isolated silicon atoms and silicon pairs with a Si–Si distance of 242.4 pm. This silicide may be described as a Zintl phase with the formula [5 Eu2+]10+[Si]4–[Si2]6–. The silicon atoms in Yb3Si5 form a two-dimensional planar network with two-connected and three-connected silicon atoms. According to the Zintl-Klemm concept the formula of homogeneous mixed-valent Yb3Si5 may to a first approximation be written as [3 Yb]8+[2 Si]2–[3 Si2–]6–. Magnetic susceptibility investigations of Eu5Si3 show Curie-Weiss behaviour above 100 K with a magnetic moment of 7.85(5) μB which is close to the free ion value of 7.94 μB for Eu2+. Chemical bonding in Eu5Si3 and Yb3Si5 was investigated by semi-empirical band structure calculations using an extended Hückel hamiltonian. The strongest bonding interactions are found for the Si–Si contacts followed by Eu–Si and Yb–Si, respectively. The main bonding characteristics in Eu5Si3 are antibonding Si12-π* and bonding Eu–Si1 states at the Fermi level. The same holds true for the silicon polyanion in Yb3Si5.  相似文献   

3.
Polyanionic silicon clusters are provided by the Zintl phases K4Si4, comprising [Si4]4− units, and K12Si17, consisting of [Si4]4− and [Si9]4− clusters. A combination of solid‐state MAS‐NMR, solution NMR, and Raman spectroscopy, electrospray ionization mass spectrometry, and quantum‐chemical investigations was used to investigate four‐ and nine‐atomic silicon Zintl clusters in neat solids and solution. The results were compared to 29Si isotope‐enriched samples. 29Si‐MAS NMR and Raman shifts of the phase‐pure solids K4Si4 and K12Si17 were interpreted by quantum‐chemical calculations. Extraction of [Si9]4− clusters from K12Si17 with liquid ammonia/222crypt and their transfer to pyridine yields in a red solid containing Si9 clusters. This compound was characterized by elemental and EDX analyses and 29Si‐MAS NMR and Raman spectroscopy. Charged Si9 clusters were detected by 29Si NMR in solution. 29Si and 1H NMR spectra reveal the presence of the [H2Si9]2− cluster anion in solution.  相似文献   

4.
Polyanionic silicon clusters are provided by the Zintl phases K4Si4, comprising [Si4]4− units, and K12Si17, consisting of [Si4]4− and [Si9]4− clusters. A combination of solid‐state MAS‐NMR, solution NMR, and Raman spectroscopy, electrospray ionization mass spectrometry, and quantum‐chemical investigations was used to investigate four‐ and nine‐atomic silicon Zintl clusters in neat solids and solution. The results were compared to 29Si isotope‐enriched samples. 29Si‐MAS NMR and Raman shifts of the phase‐pure solids K4Si4 and K12Si17 were interpreted by quantum‐chemical calculations. Extraction of [Si9]4− clusters from K12Si17 with liquid ammonia/222crypt and their transfer to pyridine yields in a red solid containing Si9 clusters. This compound was characterized by elemental and EDX analyses and 29Si‐MAS NMR and Raman spectroscopy. Charged Si9 clusters were detected by 29Si NMR in solution. 29Si and 1H NMR spectra reveal the presence of the [H2Si9]2− cluster anion in solution.  相似文献   

5.
A new transition‐metal‐containing Zintl phase, Eu10Cd6Bi12, was synthesized by combining the elements in excess molten Cd. Single‐crystal X‐ray diffraction studies indicated that this compound crystallizes in the orthorhombic space group Cmmm (No. 65) with a=7.840(2), b=24.060(7), and c=4.7809(14) Å. The crystal structure of Eu10Cd6Bi12 can be viewed as a stacking of a series of [Cd6Bi12] double layers, which are arranged alternately along the b axial direction. The layers are composed of corner‐ and edge‐shared CdBi4 tetrahedra, a common feature in the crystal chemistry of many transition‐metal Zintl phases. Electronic‐band‐structure calculations confirm the closed‐shell configuration of all constituent elements and corroborate the electron count inferred by the Zintl formalism, that is, [Eu2+]10[Cd2+]6[Bi3?]8[Bi2?]4. Magnetic‐susceptibility measurements confirm the divalency of europium and show the existence of a long‐range antiferromagnetic order of the Eu spins below 12.3 K.  相似文献   

6.
The novel binary europium silicide Eu3Si4 was synthesized from the elements. Its crystal structure is a derivative of the Ta3B4 type: space group Immm, a=4.6164(4) Å, b=3.9583(3) Å, c=18.229(1) Å, Z=2. In the structure, the silicon atoms form one-dimensional bands of condensed hexagons. Deviating from the prototype structure, a partial corrugation of the initially planar bands may be concluded from the analysis of the experimental electron density in the vicinity of the Si1 atoms. In the paramagnetic region, Eu3Si4 shows a 4f7 electronic configuration for the europium atoms. Two consecutive magnetic ordering transitions were found at 117 and 40 K. The first one is attributed to a ferromagnetic ordering of the Eu2 atoms; the second one is caused by a ferromagnetic ordering of the Eu1 atoms resulting in a ferrimagnetic ground state with a net magnetization of 7 μB at 1.8 K. The temperature dependence of the electrical resistivity reflects the metallic character of the investigated compound. Furthermore, the pronounced changes of the dρ/dT slope confirm the magnetic transitions. From bonding analysis with the electron localization function, Eu3Si4 shows a Zintl-like character and its electronic count balance can be written as (Eu1.83+)3(Si10.95−)2(Si21.8−)2, in good agreement with its magnetic behavior in the paramagnetic region.  相似文献   

7.
The new layered oxonitridosilicate EuSi2O2N2 has been synthesized in a radio‐frequency furnace at temperatures of about 1400 °C starting from europium(III ) oxide (Eu2O3) and silicon diimide (Si(NH)2). The structure of the yellow material has been determined by single‐crystal X‐ray diffraction analysis (space group P1 (no. 1), a=709.5(1), b=724.6(1), c=725.6(1) pm, α=88.69(2), β=84.77(2), γ=75.84(2)°,V=360.19(9)×106 pm3, Z=4, R1=0.0631, 4551 independent reflections, 175 parameters). Its anionic Si2O2N22? layers consist of corner‐sharing SiON3 tetrahedra with threefold connecting nitrogen and terminal oxygen atoms. High‐resolution transmission electron micrographs indicate both ordered and disordered crystallites as well as twinning. Magnetic susceptibility measurements of EuSi2O2N2 exhibit Curie–Weiss behavior above 20 K with an effective magnetic moment of 7.80(5) μB Eu?1, indicating divalent europium. Antiferromagnetic ordering is detected at 4.5(2) K. EuSi2O2N2 shows a field‐induced transition with a critical field of 0.50(5) T. The four crystallographically different europium sites cannot be distinguished by 151Eu Mössbauer spectroscopy. The room‐temperature spectrum is fitted by one signal at an isomer shift of δ=?12.3(1) mm s?1 subject to quadrupole splitting of ΔEQ=?2.3(1) mm s?1 and an asymmetry parameter of 0.46(3). Luminescence measurements show a narrow emission band with regard to the four crystallographic europium sites with an emission maximum at λ=575 nm.  相似文献   

8.
The compounds Ba4Ag2Si6, Eu4Ag2Si6, and Ca4Ag2Si6, prepared from the elements at 1273 K (the components in inner corundum crucibles are enclosed in sealed quartz ampoules), are brittle semiconductors with silvery luster. They react slowly with acids liberating hydrogen. Ba4Ag2[Si6] and Eu4Ag2[Si6] crystallize like Ba4Li2[Si6] (space group Fddd (No. 70); a = 8.613 Å, b = 14.927 Å, c = 19.639 Å, and a = 8.420 Å, b = 14.585 Å, c = 17.864 Å, respectively), whereas Ca4Ag2[Si6] represents a new structure type (space group Fmmm (No. 69); a = 8.315 Å, b = 14.391 Å, c = 8.646 Å). The three compounds are Zintl phases with the formal charges M2+, Ag+ and [Si6]10–. The mean bond lengths d(Si–Si) = 2.335–2.381 Å in the 10π‐Hückel arene [Si6]10– as well as d(Ag–Si) = 2.464–2.595 Å vary with the size of the M2+ cations. The chemical bonding was analyzed in terms of the Electron Localization Function (ELF) and compared with the bonding in related systems (Ce4Co2Si6).  相似文献   

9.
The cubic inverse Perovskites (Eu3O)In and (Eu3O)Sn were prepared from the metals and Eu2O3 or SnO2, respectively. For (Eu3O)In the crystal structure analysis was performed on single crystal X‐ray diffraction data (space group , a = 512.79(3) pm, Z = 1, Rgt(F) = 0.022, wR(F2) = 0.044). The data indicated full occupancy on all sites and a fully ordered structure. According to magnetic susceptibility measurements and X‐ray absorption spectroscopic data at the Eu LIII edge both compounds contain europium in the 4f7 (Eu2+) electronic state. (Eu3O)In orders ferromagnetically at 185(5) K, (Eu3O)Sn shows antiferromagnetic order at 31.4(2) K. Both compounds behave as metallic conductors in electrical resistivity measurements. However, (Eu3O)In may be classified a metal, while (Eu3O)Sn is more likely a heavily doped degenerated semiconductor or semimetal according to the absolute values of the resistivity.  相似文献   

10.
Ba6Mg10.8Li1.2Si12, the First Compound Containing Three Different Zintl Anions A novel quaternary Zintl phase of silicon is presented. The crystal structure of Ba6Mg10.8Li1.2Si12 (Pnma, a = 22.257(5), b = 4.5804(9), c = 14.007(3) Å) is the first example of a silicide with isolated silicon atoms, Si2 dumb‐bells and Si3 chains thus with three different Zintl anions within one structure. Accompanying quantumchemical investigations in the Extended Hückel framework give detailed insights in the present bond situation and support general trends found in unusual Zintl phases.  相似文献   

11.
Highly metallic compounds with a quasi‐one‐dimensional structure, the new ternary compounds Ln2Al3Si2 (Ln=Ho, Er, Tm) are synthesized in molten aluminum from lanthanoid and silicon as reagents. Their structures show a formally [Al3Si2]6− framework that contains infinite Al zigzag chains and Si−Si dimers and accommodates rows of Ln3+ ions in parallel tunnels. The compounds exhibit metamagnetic transitions at high magnetic fields.  相似文献   

12.
The New Layer‐Silicates Ba3Si6O9N4 and Eu3Si6O9N4 The new oxonitridosilicate Ba3Si6O9N4 has been synthesized in a radiofrequency furnace starting from BaCO3, amorphous SiO2 and Si3N4. The reaction temperature was at about 1370 °C. The structure of the colorless compound has been determined by single‐crystal X‐ray diffraction analysis (Ba3Si6O9N4, space group P3 (no. 143), a = 724.9(1) pm, c = 678.4(2) pm, V = 308.69(9)· 106 pm3, Z = 1, R1 = 0.0309, 1312 independent reflections, 68 refined parameters). The compound is built up of corner sharing SiO2N2 tetrahedra forming corrugated layers between which the Ba2+ ions are located. Substitution of barium by europium leads to the isotypic compound Eu3Si6O9N4. Because no single‐crystals could be obtained, a Rietveld refinement of the powder diffractogram was conducted for the structure refinement (Eu3Si6O9N4, space group P3 (no. 143), a = 711.49(1) pm, c = 656.64(2) pm, V = 287.866(8) ·106 pm3, Rp = 0.0379, RF2 = 0.0638). The 29Si MAS‐NMR spectrum of Ba3Si6O9N4 shows two resonances at ?64.1 and ?66.0 ppm confirming two different crystallographic Si sites.  相似文献   

13.
The hydrogenation of Zintl phases enables the formation of new structural entities with main‐group‐element–hydrogen bonds in the solid state. The hydrogenation of SrSi, BaSi, and BaGe yields the hydrides SrSiH5/3−x , BaSiH5/3−x and BaGeH5/3−x . The crystal structures show a sixfold superstructure compared to the parent Zintl phase and were solved by a combination of X‐ray, neutron, and electron diffraction and the aid of DFT calculations. Layers of connected HSr4 (HBa4) tetrahedra containing hydride ions alternate with layers of infinite single‐ and double‐chain polyanions, in which hydrogen atoms are covalently bound to silicon and germanium. The idealized formulae AeTt H5/3 (Ae =alkaline earth, Tt =tetrel) can be rationalized with the Zintl–Klemm concept according to (Ae 2+)3(Tt H)(Tt 2H2−)(H)3, where all Tt atoms are three‐binding. The non‐stoichiometry (SrSiH5/3−x , x =0.17(2); BaGeH5/3−x , x =0.10(3)) can be explained by additional π‐bonding of the Tt chains.  相似文献   

14.
Can One Design Zintl Anions? Contributions from the System Sr/Mg/Si to the Topic Si2? Two novel ternary silicides, SrMgSi2 (Pnma, Z = 8, a = 14.374, b = 4.4512, c = 11.398 Å) and Sr11Mg2Si10, (C2/m, Z = 2, a = 19.744, b = 4.754, c = 14.84 Å, β = 112.47°) have been established in the ternary system Sr/Mg/Si. The compounds are synthezised from the elements under inert conditions. Single crystal structure determinations yield the novel Zintl anions, [Si(Si3)8?] a branched chain, and the zig-zag chain piece [Si8]18?, both of which exhibit significant correlations and differences with respect to the linear chains in [Si?] in the binary MSi phases (M = Ca, Sr, Ba) which have been reinvestigated in this context. The variations of the Zintl anions can be traced back mainly to the differences of Mg? Si and Sr? Si interactions. From these findings a functional relationship between Mg content and the formation of endgroup members in Zintl anions of silicon is anticipated.  相似文献   

15.
A novel nitride, Sr2−yEuyB2−2xSi2+3xAl2−xN8+x (x≃ 0.12, y≃ 0.10) (distrontium europium diboron disilicon dialuminium octanitride), with the space group P2c, was synthesized from Sr3N2, EuN, Si3N4, AlN and BN under nitrogen gas pressure. The structure consists of a host framework with Sr/Eu atoms accommodated in the cavities. The host framework is constructed by the linkage of MN4 tetrahedra (M = Si, Al) and BN3 triangles, and contains substitutional disorder described by the alternative occupation of B2 or Si2N on the (0, 0, z) axis. The B2:Si2N ratio contained in an entire crystal is about 9:1.  相似文献   

16.
Two interpenetrating 2 [Si 20 30− ] polyanions with naphthalene-like Si1010− building blocks (see picture) characterize the“nonclassical” Zintl phase Sr13Mg2Si20, which is formed from the elements at 1230–1240 K. The ecliptical stacking of the Si1010− units leads to one-dimensional conductivity along the stacking direction.  相似文献   

17.
The highly reactive silicon congeners of cyclopropene, cyclotrisilenes (c‐Si3R4), typically undergo either π‐addition to the Si=Si double bond or σ‐insertion into the Si?Si single bond. In contrast, treatment of c‐Si3Tip4 (Tip=2,4,6‐iPr3C6H2) with styrene and benzil results in ring opening of the three‐membered ring to formally yield the [1+2]‐ and [1+4] cycloaddition product of the isomeric disilenyl silylene to the C=C bond and the 1,2‐diketone π system, respectively. At elevated temperature, styrene is released from the [1+2]‐addition product leading to the thermodynamically favored housane species after [2+2] cycloaddition of styrene and c‐Si3Tip4.  相似文献   

18.
Luminescence properties of divalent europium in the mixed‐anion hydride chloride EuHCl were studied for the first time. Olive‐green single crystals of EuHCl (PbFCl‐type structure: tetragonal, P4/nmm, a = 406.58(3) pm, c = 693.12(5) pm, c/a = 1.705, Z = 2) resulted from the reaction of elemental europium (Eu), sodium hydride (NaH) and sodium chloride (NaCl), while powder samples were prepared from the binary components europium dihydride (EuH2) and dichloride (EuCl2). Low temperature X‐ray powder diffraction proved the absence of phase transitions for 12(2) K ≤ T ≤ 295(2) K. Bright green emission was observed under UV‐excitation and assigned to the 4f65d1–4f7 transition of divalent europium. Temperature‐dependent luminescence absorption and emission, as well as lifetime measurements were carried out on single crystal and powder samples. Surprisingly, only limited concentration quenching was found. Additionally, two emission bands (485 and 510 nm) are observed, whose intensity ratio depends strongly on temperature. In order to explain this behavior for a single Eu2+ site, we suggest either a dynamical Jahn–Teller effect in the excited 5d1 state or emission from both a 4f65d1 state and a trapped exciton state.  相似文献   

19.
In the present work, we have synthesized maleevite mineral phase BaB2Si2O8 for the first time, which is isostructural with the pekovite mineral SrB2Si2O8. In these europium doped host lattices, we observed the partial reduction of Eu3+ to Eu2+ at high temperature during the synthesis in air. Tb3+ co-doping in MB2Si2O8:0.01(Eu3+/Eu2+) [M=Sr, Ba] improves the emission properties towards white light. The emission color varies from bluish white to greenish white under UV lamp excitation when the host cation changes from Sr to Ba.  相似文献   

20.
Reaction of the bicyclo[1.1.0]tetrasilatetraamide Si4{N(SiMe3)Dipp}4 1 (Dipp=2,6‐diisopropylphenyl) with 5 equiv of the N‐heterocyclic carbene NHCMe4 (1,3,4,5‐tetramethylimidazol‐2‐ylidene) affords a bifunctional carbene‐coordinated four‐membered‐ring compound with a Si=N group and a two‐coordinate silicon atom Si4{N(SiMe3)Dipp}2(NHCMe4)2(NDipp) 2 . When 2 reacts with 0.25 equiv sulfur (S8), two sulfur atoms add to the divalent silicon atom in plane and perpendicular to the plane of the Si4 ring, which confirms the silylone character of the two‐coordinate silicon atom in 2 .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号