首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The free‐radical polymerization of methyl methacrylate (MMA), ethyl methacrylate (EMA), isopropyl methacrylate (IPMA), and tert‐butyl methacrylate (t‐BuMA) was carried out under various conditions to achieve stereoregulation. In the MMA polymerization, syndiotactic specificity was enhanced by the use of fluoroalcohols, including (CF3)3COH as a solvent or an additive. The polymerization of MMA in (CF3)3COH at −98 °C achieved the highest syndiotacticity (rr = 93%) for the radical polymerization of methacrylates. Similar effects of fluoroalcohols enhancing syndiotactic specificity were also observed in the polymerization of EMA, whereas the effect was negligible in the IPMA polymerization. In contrast to the polymerizations of MMA and EMA, syndiotactic specificity was decreased by the use of (CF3)3COH in the t‐BuMA polymerization. The stereoeffects of fluoroalcohols seemed to be due to the hydrogen‐bonding interaction of the alcohols with monomers and growing species. The interaction was confirmed by NMR measurements. In addition, in the bulk polymerization of MMA at −78 °C, syndiotactic specificity and polymer yield increased even in the presence of a small amount {[(CF3)3COH]/[MMA]o < 1} of (CF3)3COH. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 4693–4703, 2000  相似文献   

2.
Summary: Recent observations on phase transitions around the critical point showed that the critical exponents differed drastically from percolation results and classical results for pure hydrogel systems, depending on monomer concentration. In addition to pure hydrogels, the sol-gel phase transition during radical crosslinking copolymerization of acrylamide (AAm) and N-isopropylacrylamide (NIPA) hybrid was studied by using the steady state fluorescence (SSF) technique. N,N′-methylenebis(acrylamide) (BIS) and ammonium persulfate (APS) were used as crosslinker and initiator, respectively. Pyranine (trisodium 8-hydroxypyrene-1,3,6-trisulfonate acid, HPTS) was added as a fluoroprobe for monitoring the polymerization. It was observed that pyranine binds to AAm and NIPA chains on the initiation of the polymerization, thus the fluorescence spectra of the bonded pyranines shift to shorter wavelengths. Fluorescence spectra of the bonded pyranines allowed to monitor the sol-gel phase transition without disturbing the system mechanically and to test the universality of the sol-gel transition as a function of polymer concentration ratios. The observations around the gel point of PAAm-PNIPA hybrid show that the gel fraction exponent β obeyed the percolation result.  相似文献   

3.
Low‐rate dynamic contact angles of 12 liquids on a poly(methyl methacrylate/ethyl methacrylate, 30/70) P(MMA/EMA, 30/70) copolymer were measured by an automated axisymmetric drop shape analysis‐profile (ADSA‐P). It was found that five liquids yield nonconstant contact angles, and/or dissolve the polymer on contact. From the experimental contact angles of the remaining seven liquids, it is found that the liquid–vapor surface tension times cosine of the contact angle changes smoothly with the liquid–vapor surface tension (i.e., γl|Kv cos θ depends only on γl|Kv for a given solid surface or solid surface tension). This contact angle pattern is in harmony with those from other methacrylate polymer surfaces previously studied.45,50 The solid–vapor surface tension calculated from the equation‐of‐state approach for solid–liquid interfacial tensions14 is found to be 35.1 mJ/m2, with a 95% confidence limit of ± 0.3 mJ/m2, from the experimental contact angles of the seven liquids. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 2039–2051, 1999  相似文献   

4.
Summary: The sol-gel transition of a radical chain cross-linking copoly-merization system [N-vinylcaprolactam/2-hydroxylethyl methacrylate/allyl-methacrylate] and various thermoreversible gelling systems (mixtures made of xanthan gum and locust bean gum as well as gelatin) have been studied using in-situ time-resolved dynamic light scattering (DLS) and in-situ rheology. A critical dynamical behavior was observed near the sol-gel transition, which is characterized by the presence of a power-law spectra in the time-intensity correlation function g2(t)−1 ∝ tµ and in the low-amplitude oscillatory shear experiment G′(ω) ∝ G″(ω) ∝ ωn. A comparison of the obtained critical dynamical exponents µ and n were made according to the theory by Doi and Onuki. This theory predicts a relation between these exponents, but up to now no detailed experimental comparison was done in the past. It was found that for all investigated systems n > µ.  相似文献   

5.
 The kinetics of suspended emulsion polymerization of methyl methacrylate (MMA), in which water acted as the dispersed phase and the mixture of MMA and cyclohexane as the continuous phase, was investigated. It showed that the initial polymerization rate (Rp0) and steady-state polymerization rate (Rp) were proportional to the mass ratio between water and oil phase, and increased as the polymerization temperature, the potassium persulphate concentration ([I]) and the Tween20 emulsifier concentration ([S]) increased. The relationships between the polymerization rate and [I] and [S] were obtained as follows: Rp0∝[I]0.71[S]0.23.The above exponents were close to those obtained from normal MMA emulsion polymerization. It also showed that the average molecular weight of the resulting poly(methylmethacrylate) decreased as the polymerization temperature,[I]and [S] increased. Thus, MMA suspended emulsion polymerization could be considered as a combination of many miniature emulsion polymerizations proceeding in water drops and obeyed the classical kinetics of MMA emulsion polymerization.  相似文献   

6.
Summary: The steady state fluorescence (SSF) technique was employed to study the phase transitions of κ-carrageenan in NaCl and KCl solutions. Pyranine was used as a fluorescence probe for monitoring these transitions. Scattered light, Isc, and fluorescence intensity, I, was monitored against temperature to determine transition temperatures and exponents. It was observed that transition temperatures are strongly correlated with the NaCl and KCl contents. The weight-average degree of polymerization, DPw and gel fraction G, exponents (γ and β) were measured and found to be in accord with the classical Flory-Stockmayer model.  相似文献   

7.
Single‐chain folding via intramolecular noncovalent interaction is regarded as a facile mimicry of biomacromolecules. Single‐chain folding and intramolecular crosslinking is also an effective method to prepare polymer nanoparticles. In this study, poly(methyl methacrylate‐co?2‐ureido‐5‐deazapterines functionalized ethylene methacrylate) (P(MMA‐co‐EMA‐DeAP)) is synthesized via free radical polymerization. The single‐chain folding of P(MMA‐co‐EMA‐DeAP) and the formation of the nanoparticles in diluted solution (concentration <0.005 mg/mL) are achieved via supramolecular interaction and intramolecular collapsing during the disruption‐reformation process of the hydrogen bonding triggered by water. The size and the morphology of the nanoparticles are characterized by dynamic light scattering, transmission electron microscope, and atomic force microscope. The results show that the size of the nanoparticles depends on the molecular weight of the polymer and the loading of 2‐ureido‐5‐deazapterines functionalized ethylene methacrylate (EMA‐DeAP) on the polymer backbone. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 1832–1840  相似文献   

8.
Abstract

Radical copolymerizations of itaconic acid (IA) with acrylamide (Am), N-vinyl pyrrolidone (NVP), ethyl methacrylate (EMA), and methyl methacrylate (MMA) were carried out in dioxane in the presence of azobisisobutyronitrile as the initiator at 65°C. The monomer reactivity ratios (r 1, r 2), Q, and e for IA with the four monomers were determined. The reactivity ratios show a tendency toward alternation, while the Q and e of IA indicate that it is an electron-accepting monomer. The polymers obtained were characterized by FT-IR, x-ray diffraction, intrinsic viscosity, and thermal stability measurements.  相似文献   

9.
Methyl methacrylate/styrene (MMA/S), ethyl methacrylate/styrene (EMA/S) and butyl methacrylate/styrene (BMA/S) feeds (>90 mol % methacrylate) were copolymerized in 50 wt % p‐xylene at 90 °C with 10 mol % of additional SG1‐free nitroxide mediator relative to unimolecular initiator (BlocBuilder®) to yield methacrylate rich copolymers with polydispersities w/ n = 1.23–1.46. kpK values (kp = propagation rate constant, K = equilibrium constant) for MMA/S copolymerizations were comparable with previous literature, whereas EMA/S and BMA/S copolymerizations were characterized by slightly higher kpK's. Chain extensions with styrene at 110 °C initiated by the methacrylate‐rich macroinitiators (number average molecular weight n = 12.9–33.5 kg mol?1) resulted in slightly broader molecular weight distributions with w/ n = 1.24–1.86 and were often bimodal. Chain extensions with glycidyl methacrylate/styrene/methacrylate (GMA/S/XMA where XMA = MMA, EMA or BMA) mixtures at 90 °C using the same macroinitiators resulted frequently in bimodal molecular weight distributions with many inactive macroinitiators and higher w/ n = 2.01–2.48. P(XMA/S) macroinitiators ( n = 4.9–8.9 kg mol?1), polymerized to low conversion and purified to remove “dead” chains, initiated chain extensions with GMA/MMA/S and GMA/EMA/S giving products with w/ n ~ 1.5 and much fewer unreacted macroinitiators (<5%), whereas the GMA/BMA/S chain extension was characterized by slightly more unreacted macroinitiators (~20%). © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 2574–2588, 2009  相似文献   

10.
《Fluid Phase Equilibria》1999,157(2):285-297
Cloud-point data for the system poly(methyl methacrylate) (PMMA)–CO2–methyl methacrylate (MMA) are measured in the temperature range of 26 to 170°C, to pressures as high as 2500 bar, and with cosolvent concentrations of 10.4, 28.9, and 48.4 wt.%. PMMA does not dissolve in pure CO2 to 255°C and 2550 bar. The cloud-point curve for the PMMA–CO2–10.4 wt.% MMA system exhibits a negative slope that reaches 2500 bar at 105°C. With 28.9 wt.% MMA the cloud-point curve remains relatively flat at ∼900 bar for temperatures between 25 and 170°C. With 48.4 wt.% MMA the cloud-point curve exhibits a positive slope that extends to 20°C and ∼100 bar. Pressure-composition isotherms are also reported for the CO2–MMA system at 40.0, 80.0, 105.5°C. This system exhibits type-I phase behavior with a continuous mixture–critical curve. The Peng–Robinson (PR) and SAFT equations of state model the CO2–MMA data reasonably well without any binary interaction parameters, although the PR equation provides a better representation of the mixture-critical region. It is not possible to obtain even a qualitative fit of the PMMA–MMA–CO2 data with the SAFT equation of state. The SAFT model qualitatively shows that the cloud-point pressure decreases with increasing MMA concentration and that the cloud-point curve exhibits a positive slope for very high concentrations of MMA in solution.  相似文献   

11.
2-Hydroxypropyl methacrylate (2-HPMA) has been copolym-erized with ethyl methacrylate (EMA), n-butyl methacrylate (BMA), and 2-ethylhexyl methacrylate (EHMA) in bulk at 60°C using benzoyl peroxide as initiator. The copolymer composition has been determined from the hydroxyl content. The reactivity ratios have been calculated by the Yezrielev, Brokhina, and Raskin method. For copolymerization of 2-HPMA (M1) with EMA (M2), the reactivity ratios are r1 = 1.807 ± 0.032 and r2 = 0.245 ± 0.021; with BMA (M2) they are n = 2.378 ± 0.001 and r2 = 0.19 ± 0.01; and with EHMA the values are r1 = 4.370 ± 0.048 and r2 = 0.103 ± 0.006. Since reactivity ratios are the measure of distribution of monomer units in copolymer chain, the values obtained are compared and discussed. This enables us to choose a suitable copolymer for synthesizing thermoset acrylic polymers, which are obtained from cross-linking of hydroxy functional groups of HPMA units, for specific end-uses.  相似文献   

12.
The initiation of polymerization of vinyl monomers such as methyl methacrylate (MMA) and methyl acrylate (MA) by a charge transfer complex formed between n-butylamine(nBA) and carbon tetrachloride (CCl4) in dimethylsulfoxide (DMSO) at 30°C is slow. The effect of the dimethylsulfoxide complexes of Rh(III) and Ru(II) on the polymerization of MMA and MA in the presence of nBA, and CCl4 in DMSO has been studied. The rate of polymerization and percent conversion of the MMA and MA at 30°C are evaluated at the critical concentration of the metal complexes. At the critical range of the metal complex concentrations, both Rp, and percent conversion of MMA and MA were found to be highest. However, above and below the critical concentrations, Rp and percent conversion of the monomers were found to decrease. A suitable mechanism for the polymerization has been proposed.  相似文献   

13.
Copolymerization of 2-hydroxyethyl methacrylate (HEMA) with ethyl methacrylate (EMA) and n-butyl methacrylate (BMA) was carried out in bulk at 70°C ± 1°C using 0.2% benzoyl peroxide as initiator in nitrogen atmosphere. Number average molecular weight (M n) of the copolymers was determined by dynamic osmometry. Intrinsic viscosity [η] of HEMA-BMA copolymers was evaluated at 35°C in dimethyl formamide. These copolymers were also characterized by infrared spectroscopy and density measurements. Cohesive energy densities (CED) of these polymers were determined by observing their swelling behavior in different solvents. It was found that a decrease in alkyl methacrylate content resulted in an increase in the CED values of the copolymers.  相似文献   

14.
We tested forward recoil spectrometry (FRES) as a method to determine miscibility by measuring coexistence compositions in binary polymer blends. In this study, equilibrium phase compositions were determined for a compositionally symmetric poly(styrene‐ran‐methyl methacrylate) random copolymer (S0.49r‐MMA) and two homopolymers, deuterated polystyrene (dPS) and deuterated poly(methyl methacrylate) (dPMMA). Sample preparation, film dewetting, and beam damage were addressed, and the results for these polymer blends were in good agreement with those obtained through other experimental techniques. Deuteration had a strong effect on the miscibility of the dPS/S0.49r‐MMA and dPMMA/S0.49r‐MMA blends, to the extent that the asymmetric miscibility observed separately for the PS/S0.49r‐MMA and PMMA/S0.49r‐MMA blends was not found. Although this deuteration effect may limit the applicability of FRES for some polymer systems, the accuracy with which phase compositions can be determined with FRES makes it an attractive alternative to other less quantitative methods for investigating blend miscibility. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 1547–1552, 2000  相似文献   

15.
2-Hydroxypropyl methacrylate (2 HPMA) has been copolym-erized with ethyl methacrylate (EMA), n-butyl methacrylate (BMA), and 2-ethylhexyl methacrylate (EHMA) in bulk at 60°C using benzoyl peroxide as initiator. The copolymer composition has been determined from the hydroxyl content. The reactivity ratios have been calculated by the YBR method. For copolymerization of 2-HPMA (M1) with EMA (M2), the reactivity ratios are: r1=1.807 ± 0.032, r2=0.245 ± 0.021; with BMA (M2) they are r1=2.378 ± 0.001, r2=0.19 ± 0.01; and with EHMA the values are r1=4.370 ± 0.048, r2=0.103 ± 0.006. Since the reactivity ratios are the measure of distribution of monomer units in a copolymer chain, the values obtained are compared and discussed. This enables us to choose a suitable copolymer for synthesizing thermoset acrylic polymers, which are obtained from cross-linking of hydroxy functional groups of HPMA units, for specific end uses.  相似文献   

16.
Photosensitized copolymerization of optically active N-l-menthylmaleimide (NMMI) with styrene (Sty) and methyl methacrylate (MMA) was carried out in tetrahydrofuran (THF) at 30°C with benzoyl peroxide (BPO). The monomer reactivity ratios for the copolymerization of NMMI (M2) with Sty (M1) and MMA (M1) were r1 = 0.08 ± 0.10, r2 = 0.20 ± 0.05 and r1 = 2.85 ± 0.06, r2 = 0.07 ± 0.06, respectively. Copoly-MMA–NMMI and poly-NMMI showed positive circular dichroism(CD) curves of equal intensity and shape over the wavelength region from 230 to 270 nm; copoly-Sty–NMMI also showed a positive CD curve which was similar in shape but was different in intensity from that of poly-NMMI. The correlation between monomer unit ellipticity of the copolymers and their composition would suggest the alternating and stereoregular copolymerization of NMMI with Sty.  相似文献   

17.
This article reports the synthesis of the block and graft copolymers using peroxygen‐containing poly(methyl methacrylate) (poly‐MMA) as a macroinitiator that was prepared from the atom transfer radical polymerization (ATRP) of methyl methacrylate (MMA) in the presence of bis(4,4′‐bromomethyl benzoyl peroxide) (BBP). The effects of reaction temperatures on the ATRP system were studied in detail. Kinetic studies were carried out to investigate controlled ATRP for BBP/CuBr/bpy initiating system with MMA at 40 °C and free radical polymerization of styrene (S) at 80 °C. The plots of ln ([Mo]/[Mt]) versus reaction time are linear, corresponding to first‐order kinetics. Poly‐MMA initiators were used in the bulk polymerization of S to obtain poly (MMA‐b‐S) block copolymers. Poly‐MMA initiators containing undecomposed peroygen groups were used for the graft copolymerization of polybutadiene (PBd) and natural rubber (RSS‐3) to obtain crosslinked poly (MMA‐g‐PBd) and poly(MMA‐g‐RSS‐3) graft copolymers. Swelling ratio values (qv) of the graft copolymers in CHCl3 were calculated. The characterizations of the polymers were achieved by Fourier‐transform infrared spectroscopy (FTIR), 1H‐nuclear magnetic resonance (1H NMR), gel‐permeation chromatography (GPC), differential scanning calorimetry (DSC), thermogravimetric analysis, scanning electron microscopy (SEM), transmission electron microscopy (TEM), atomic force microscopy (AFM), and the fractional precipitation (γ) techniques. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1364–1373, 2010  相似文献   

18.
Low concentrations (0.001–0.03M) of chlorine easily induce photopolymerization of MMA at 40°C. Kinetic data indicate that polymerization follows a radical mechanism involving complexation of monomer by the initiator and initiation takes place through radical generation during photodecomposition of the initiator-monomer complex. Termination appears to take place bimolecularly. The kp2/kt value for MMA polymerization at 40°C was found to be 0.83 × 10?2. Rates of chlorine-initiated photopolymerization were found to decrease in the order MMA, EMA ? VA, Sty > MA.  相似文献   

19.
Copolymers of methyl vinyl ketone (MVK) and methyl isopropenyl ketone (MIK) with methyl methacrylate (MMA), have been prepared covering the whole composition range. Reactivity ratios have been estimated as follows: MMA/MVK, rMMA = 0·63 ± 0·2, rMVK = 0·53 ± 0·2; MMA/MIK, rMMA = 0·98 ± 0·2, rMIK = 0·69 ± 0·2. Number average molecular weights have been measured during the course of photodegradation under 253·7 nm radiation in methyl acetate solution and rates of chain scission calculated. In each system the copolymers are less stable than the corresponding homopolymers, the rate passing through a maximum at 20–30% ketone content. These results have been discussed from a mechanistic point of view.  相似文献   

20.
Copolymers of methyl methacrylate (MMA) with 2,3,5,6‐tetrafluorophenyl methacrylate (TFPMA), pentafluorophenyl methacrylate (PFPMA), and 4‐trifluoromethyl‐2,3,5,6‐tetrafluorophenyl methacrylate (TFMPMA) were investigated. All the three systems showed a random copolymerization character. The composition, glass transition temperature (Tg), and refractive index of the copolymers obtained were studied. Tgs of TFPMA/MMA and PFPMA/MMA copolymers were found to deviate positively from the Gordon–Taylor equation. However, Tgs of TFMPMA/MMA copolymers were well fit with the Gordon–Taylor equation. These results indicated the existence of interaction between MMA and either TFPMA or PFPMA units in copolymers. This interaction resulted in the enhancement of the Tg of MMA polymers through the copolymerization with TFPMA and PFPMA. The refractive index and the light transmittance of copolymers were close to those of PMMA. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号