首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Single crystals of Hg2TeO5 were obtained as dark‐red parallelepipeds by reacting stoichiometric amounts of Hg(NO3)2 · H2O and H6TeO6 under hydrothermal conditions (250 °C, 10d). The crystal structure (space group Pna21, Z = 4, a = 7.3462(16), b = 5.8635(12), c = 9.969(2)Å, 1261 structure factors, 50 parameters, R[F2 > 2σ(F2)] = 0.0295) is characterized by corner‐sharing [TeO6] octahedra forming isolated chains [TeO4/1O2/2] which extend parallel to [100]. The two crystallographically independent Hg atoms are located in‐between the chains and interconnect the chains via common oxygen atoms. Amber coloured single crystals of Hg3TeO6 were prepared by heating a mixture of Hg, HgO and TeO3 together with small amounts of HgCl2 as mineralizer in an evacuated and sealed silica glass tube (520 °C). The previously reported crystal structure has been re‐investigated by means of single crystal X‐ray data which reveal a symmetry reduction from Iad to Ia3¯ (Z = 16, a = 13.3808(6) Å, 609 structure factors, 33 parameters, R[F2 > 2σ(F2)] = 0.0221). The crystal structure is made up of a body‐centred packing of [TeO6] octahedra with the Hg atoms situated in the interstices of this arrangement. Upon heating, both title compounds decompose in a one‐step mechanism under formation of TeO2 and loss of the appropriate amounts of elementary mercury and oxygen.  相似文献   

2.
The compounds [(Me3SiO)8Te2O2] ( 1 ) and [(Me4Si2O2)3Te] ( 2 ) have been prepared in good yields through Bronsted acid‐base reaction of Te(OH)6 with Me3SiNEt2 and Me4Si2(NEt2)2, respectively. They have been characterised by multinuclear NMR spectroscopy and single crystal X‐ray diffraction analyses. The formation of dinuclear 1 is the result of fast intermolecular condensation of two partially silylated orthotelluric acid units during the esterification process. Its structure consists of two edge‐fused TeO6‐octahedra, bearing a four‐membered Te2O2 ring as central motif. In contrast, the main structural feature of chiral 2 is a TeO6 octahedron which is fully silylated by three bidentate 1,1,2,2‐tetramethyldisilanediyl units, resulting in a racemic mixture. The metastability of 2 is remarkable since the Te(+ 6) center usually acts as a strong oxidation reagent toward the Si–Si bond in disilanes. 1 and 2 represent potential starting compounds for molecular TexOy aggregates as hybrid components for new glasses by sol‐gel procedure.  相似文献   

3.
[Bis(dimethylamino)ethanediylidene]bis(dimethylammonium) bis(trifluoromethylchalcogenates(0)), (TDAE)[ECF3]2 (E = Se, Te), are quantitatively formed from the reductions of E2(CF3)2 with tetrakis(dimethylamino)ethene, TDAE. Both compounds are bright yellow to orange solids which crystallize isostructurally with the corresponding sulfur derivative in the orthorhombic space group Pbca (No. 61). (TDAE)[SeCF3]2 has alternatively been prepared by cation exchange from [NMe4]SeCF3 and (TDAE)Br2.  相似文献   

4.
In mononuclear HgI2[(C5H4N)3N], mercury is tetrahedrally coordinated by two nitrogen atoms of a tris(2‐pyridyl)amine ligand and two iodides. The coordination moieties are connected by weak intermolecular Hg(II)···I interactions to give a one‐dimensional structure. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

5.
Polymeric, Band Shaped Tellurium Cations in the Structures of the Chloroberyllate Te7[Be2Cl6] and the Chlorobismutate (Te4)(Te10)[Bi4Cl16] Te7[Be2Cl6] is obtained at 250 °C in an eutectic Na2[BeCl4] / BeCl2 melt from Te, TeCl4 und BeCl2 in form of black crystals, which are sensitive towards hydrolysis in moist air. (Te4) (Te10)[Bi4Cl16] is prepared from Te, TeCl4 und BiCl3 by chemical vapour transport in sealed evacuated glass ampoules in a temperature gradient 150 ° → 90 °Cin form of needle shaped crystals with a silver lustre. The structures of both compounds were determined based on single crystal X‐ray diffraction data (Te7[Be2Cl6]: orthorhombic, Pnnm, Z = 2, a = 541.60(3), b = 974.79(6), c = 1664.4(1) pm; (Te4)(Te10)[Bi4Cl16]: triclinic, P1¯, Z = 2, a = 547.2(3), b = 1321.1(7), c = 1490(1) pm, α = 102.09(5)°, β = 95.05(5)°, γ = 96.69(4)°). The structure of Te7[Be2Cl6] consists of one‐dimensional polymeric cations (Te72+)n which form folded bands and of discrete [Be2Cl6]2— anions which form double tetrahedraconnected by a common edge. By a different way of folding compared with the cations present in the structures of Te7[MOX4]X (M = Nb, W; X = Cl, Br) the (Te72+)n cation in Te7[Be2Cl6]represents a new, isomeric form. The structure of (Te4)(Te10)[Bi4Cl16] contains two different polymeric cations. (Te102+)n consists of planar Te10 groups in the form of three corner‐sharing Te4 rings connected to folded bands. (Te42+)n forms in contrast to the so far notoriously observed discrete, square‐planar E42+ ions a chain of rectangular planar Te4 rings (Te—Te 274 and 281 pm) connected by Te‐Te bonds of 297 pm. [Bi4Cl16]4— has a complex one‐dimensional structure of edge‐ and corner‐sharing BiCl7 units.  相似文献   

6.
The reaction of Mes2TeF2 (Mes = 2,4,6‐trimethylphenyl) with trimethylsilyl cyanide yields the corresponding tellurium(IV) dicyanide Mes2Te(CN)2. Isolation of suitable crystals allows the determination of the first crystal structure of a compound of the type R2Te(CN)2.  相似文献   

7.
8.
The synthesis of the following mixed ligand organotellurium(IV) compounds C8H8Te(S2CNEt2)[(SPPh2)2N] · H2O ( 1 ), C8H8Te(S2CNC5H10)[(SPPh2)2N] ( 2 ), C8H8Te(S2CNC4H8O)[(SPPh2)2N] ( 3 ) and C8H8Te(S2CNC4H8S)[(SPPh2)2N] ( 4 ) was achieved. They were characterized by IR, 1H, 13C, 31P and 125Te NMR, mass spectroscopy, and elemental analyses. The X‐ray crystal structures of 1 , 2 and 4 were determined. The both types of ligands display an asymmetrical chelating coordination mode on interaction with the tellurium atom. When these aniso‐bonded donor atoms are included in the coordination sphere, the tellurium atom exhibit an effective co‐ordination number of seven. The arrangement may be described as 1 : 2 : 2 : 2 coordination with a presumably stereoactive lone‐pair of electrons.  相似文献   

9.
Compounds [HQ]2[Hg(L)2] and [HQ][PhHg(L)] [where HQ = diisopropylammonium cation; L = pspa, fspa, tspa, where p = 3-(phenyl), f = 3-(2-furyl), t = 3-(2-thienyl), and spa = 2-sulfanylpropenoato] have been prepared by the reaction of mercury(II) acetate or phenylmercury(II) acetate with the corresponding acid in the presence of diisopropylamine in ethanol. The compounds have been characterized by elemental analysis, FAB mass spectrometry and IR and NMR (1H, 13C) spectroscopy. The crystal structures of the [HQ]2[Hg(L)2] compounds show the presence of diisopropylammonium cations and [Hg(L)2]2− anions. In each anion the Hg atom is in an HgO2S2 environment and this can be described as nido-tbp. The crystal structures of the [HQ][PhHg(L)] compounds show the presence of diisopropylammonium cations and [PhHg(L)] anions in which the Hg atom adopts an HgCOS distorted T-environment. The NMR data suggest that the coordination mode of the ligand L2− determined by X-ray diffractometry in the solid remains in solution.  相似文献   

10.
The reaction of Te(OH)6 with Ph3SnOH in ethanol leads to the formation of trans‐[(Ph3SnO)4Te(OH)2] ( 1 ). Compound 1 crystallizes triclinic in the space group P\bar{1} with a = 996.6(2) pm, b = 1365.4(3) pm, c = 1368.2(3) pm and α = 71.15(2)°, β = 71.48(2)°, γ = 74.81(3)° (at 220 K). The molecular structure of 1 consists of a tellurium atom, which is coordinated nearly octahedrally by four Ph3SnO units and two hydroxyl groups that are trans to each other. The Te–O bond lengths are in the range of 190.5(2) and 193.7(2) pm. Treatment of 1 with methanol under reflux yields trans‐[(Ph3SnO)2Te(OMe)4] ( 2 ). Compound 2 crystallizes triclinic in the space group P\bar{1} with a = 1012.8(1) pm, b = 1422.4(2) pm, c = 1618.1(2) pm, and α = 100.44(1)°, β = 107.92(1)°, γ = 110.66(1)° (at 220 K). 2 forms centrosymmetric molecules in which the tellurium atom is surrounded nearly octahedrally by four methoxy groups and two trans arranged Ph3SnO units. The Te–O bond lengths of 187.9(3)–194.5(3) pm are similar to those observed in 1 .  相似文献   

11.
The reaction of dibenzenediselenide, (SePh)2, with mercury in refluxing xylene gives bis(benzeneselenolato)mercury(II), [Hg(SePh)2], in a good yield. (nBu4N)[Hg(SePh)3] is obtained by the reaction of [Hg(SePh)2] with a solution of [SePh] and (nBu4N)Br in ethanol. The solid state structures of both compounds have been determined by X-ray diffraction. The mercury atom in [Hg(SePh)2] (space group C2, a = 7.428(2), b = 5.670(1), c = 14.796(4) Å, β = 103.60(1)°) is linearly co-ordinated by two selenium atoms (Hg–Se = 2.471(2) Å, Se–Hg–Se = 178.0(3)°). Additional weak interactions between the metal and selenium atoms of neighbouring molecules (Hg…Se = 3.4–3.6 Å) associate the [Hg(SePh)2] units to layers. The crystal structure of (nBu4N)[Hg(SePh)3] (space group P21/c, a = 9.741(1), b = 17.334(1), c = 21.785(1) Å, β = 95.27(5)°) consists of discrete complex anions and (nBu4N)+ counter ions. The coordination geometry of mercury is distorted trigonal-planar with Hg–Se distances ranging between 2.5 and 2.6 Å.  相似文献   

12.
[PdCl(TeMe2)3]BArF ( 4 ) forms as the major tellurium containing product from the reaction of [(4‐Mebti)PdCl] with TeMe2 and Na(BArF) and is isolated by crystallization from the reaction mixture. At ?20 °C, the compound forms orange columns from toluene/pentane, space group , with Z = 2. In the solid, the cationic [PdCl(TeMe2)3]+ complex ions show a non‐planar PdClTe3 coordination unit and are associated to dimers via weak Pd···Te interactions.  相似文献   

13.

Several preparative routes to bis[N(substituted-phenyl) 4-nitro-thiobenzamidato] mercury(II) complexes are presented, including the reaction of mercury(II) oxide, fluoride, chloride, bromide, cyanide, acetate, and nitrate with N(substituted-phenyl) 4-nitro-thiobenzamide derivatives. 1 H-NMR, Raman, and IR measurements confirmed the complexation of mercury to sulphur.  相似文献   

14.
The Crystal Structure of the Low‐Temperature Form of Ag5Te2Cl Crystals of trimorphic Ag5Te2Cl were obtained by solid state reaction from a stoichiometric mixture of silver, tellurium, and tellurium(IV)chloride (480 °C, 4–10 days). The crystals were cooled down to –80 °C without decomposition and data collection was carried out at this temperature. The low temperature form of the title compound crystallizes in space group P21/c with lattice constants of a = 19.359(1) Å, b = 7.713(1) Å, c = 19.533(1) Å, β = 90.6°(1), V = 2916.4(1), and Z = 16. The refinement converged to residual values of R1 = 0.0381 and wR2 = 0.0847, respectively. Te and Cl atoms form empty, distorted octahedra interconnected by common vertices to give a 3D‐network. Ag atoms form clusters with Ag–Ag distances between 2.83 Å and 3.10 Å.  相似文献   

15.
The anions [(TeCF3)2X]? (X = Cl, Br, I) resemble the trihalides [I2X]? in the solid state and show similar dynamic behaviour in solution. All three compounds crystallize iso‐structurally in the triclinic space group with Z = 2 and exhibit cell dimensions according to the sizes of the halogen atoms.  相似文献   

16.
Synthesis and Structure of [(Ph3C6H2)Te]2, [(Ph3C6H2)Te(AuPPh3)2]PF6 and [(Ph3C6H2)TeAuI2]2 [(2,4,6-Ph3C6H2)Te]2 reacts with Ph3PAu+ to yield [2,4,6-Ph3C6H2TeAuPPh32]PF6 which can be oxidized by I2 to form the gold(III) complex [(2,4,6-Ph3C6H2)TeAuI2]2. [(2,4,6-Ph3C6H2)Te]2 crystallizes in the monoclinic space group P21/c with a = 810.6(2); b = 2026.5(5); c = 2260.6(7) pm; β = 99.23(3)° and Z = 4. In the crystal structure the ditelluride exhibits a dihedral angle C11? Te1? Te2? C21 of 66.1(2)°. The distance Te1? Te2 is 269.45(6) pm. In the cation of the triclinic complex [(2,4,6-Ph3C6H2)Te(AuPPh3)2]PF6 (space group P1 ; a = 1197.4(3); b = 1457.2(4); c = 1680.0(6) pm; α = 84.69(3)°; β = 85.11(3)°; γ = 75.54(3)°; Z = 2) a pyramidal skeleton RTeAu2 with distances Te? Au = 259.2(1) and 257.8(2) pm and Au? Au = 295.3(1) pm is present. [(2,4,6-Ph3C6H2)TeAuI2]2 crystallizes in the triclinic space group P1 with a = 1086.3(3); b = 1462.9(6); c = 1654.2(2) pm; α = 85.25(2)°; β = 87.44(1)°; γ = 80.90(3)°; Z = 2. In the centrosymmetrical dinuclear complex [(2,4,6-Ph3C6H2)TeAuI2]2 the Au atoms exhibit a square-planar coordination by two iodine atoms and two tellurolate ligands. The tellurolate ligands form symmetrical bridges with distances Te? Au = 260.0 pm. The distances Au? I are in the range of 260.3(1) and 263.7(1) pm.  相似文献   

17.
The high temperature vaporization pattern of Hg3Te2I2(s,l) shows four distinctly different regimes, similar to those of the HgTe vaporization. The most predominant species in the vapor phase in all four regimes is HgI2(g), followed by Hg(g) and, possibly, Te2I2(g). The width of the “homogeneity range” of Hg3Te2I2(s) was determined to be less than about 0.17 mole‐% HgI2. Applying the second‐law method to the vaporization of HgTe‐saturated Hg3Te2I2(s) at higher temperatures yields the heat and entropy of vaporization of 20.9 ± 2.3 (kcal/mole) and of 27.5 ± 2.8 (cal/mole K), respectively, with estimated total uncertainties of less than ± 5.8 (kcal/mole) and ± 7.6 (cal/mole K), at an average temperature of 722 K. With an estimated heat capacity function of Hg3Te2I2(s) and estimated thermodynamic values for HgI2‐saturated HgTe(s), the heat of formation and absolute entropy of Hg3Te2I2(s) are computed to be = ?49.7 ± 1.1 (kcal/mole) and = 97.3 ± 1.4 (cal/mole K), with estimated total uncertainties of ± 8.3 (kcal/mole) and ± 14.0 (cal/mole K). The combined results of this investigation provide valuable information for the crystal growth of this material from the vapor and molten phase.  相似文献   

18.
By reacting Mn2(CO)10 and TeI4 in the ionic liquid[BMIm][OTf] (1‐butyl‐3‐methylimidazolium trifluromethanesulfonate), brick‐red crystals of [BMIm][(Te2)3{Mn(CO)3}2{Mn(CO)4}3]are obtained. The title compound contains the carbonyl anion[(Te2)3{Mn(CO)3}2{Mn(CO)4}3]. Herein, three formal Te22– units and two formal Mn(CO)3+ fragments establish a distorted heterocubane‐like Te6Mn2 structure. Three edges of this heterocubane are furthermore capped by Mn(CO)4+ fragments. The resulting Te6Mn5 building unit, moreover, looks very similar to the P113– anion – the so‐called ufosane. The mean distances Te–Te and Te–Mn are observed with 277.6 and 264.7 pm, respectively. In addition to single‐crystal structure analysis, the title compound is characterized by infrared spectroscopy (FT‐IR), thermogravimetry (TG) and energy‐dispersive X‐ray (EDX) analysis.  相似文献   

19.
Polycrystalline mercurous diarsenate(V), (Hg2)2(As2O7), was prepared by a redox‐reaction between stoichiometric amounts of HgO and As2O3. Canary yellow single crystals were obtained by subsequent chemical transport reactions using HgCl2 as transport agent [550 → 500 °C, 5 d, sealed and evacuated silica ampoules]. The crystal structure (orthorhombic, Pnma, Z = 4, a = 9.9803(8), b = 12.2039(10), c = 7.2374(6)Å) is composed of two crystallographically independent Hgequation/tex2gif-stack-1.gif dumbbells ((Hg—Hg) = 2.5133Å) with a symmetric oxygen coordination sphere, and a diarsenate group with a staggered conformation and a bent bridging angle As—O—As = 121.0(7)°. The building units are arranged in a layer‐like assembly parallel to (010) and are connected via common oxygen atoms to form a three‐dimensional network.  相似文献   

20.
The reactions between diphenyl ditelluride, (PhTe)2, or di(β-naphtyl)ditelluride, (β-naphtylTe)2, with equivalent amounts of iodine have been reinvestigated and the crystal and molecular structures of iodophenyltellurium(II), (PhTeI)4, and diiododi-(β-naphtyl)tellurium(IV), (β-naphtyl)2TeI2, have been determined. The structure of iodophenyltellurium(II) (space group Cc, a = 13.850(5) Å, b = 13.852(3) Å, c = 16.494(6) Å and β = 101.69(2)°, Z = 4) is built up by four PhTeI units which are linked by weak Te–Te interactions with Te–Te distances between 3.152(5) Å and 3.182(4) Å. The angles between the tellurium atoms are approximately 90° giving an almost perfect square. Long range secondary bonds (Te–I: about 4.2 Å) link the tetrameric units to give an infinite two-dimensional network. Iodo(β-naphtyl)tellurium(II) is less stable than the phenyl derivative. Solutions of this compound decompose under formation of elemental tellurium and (β-naphtyl)2TeI2. (β-Naphtyl)2TeI2 crystallises in the monoclinic space group C 2/c (a = 21.198(6) Å, b = 5.8921(8) Å, c = 16.651(5) Å, β = 114.77(2)°). The tellurium atom is situated on a two-fold crystallographic axis and Te–I and Te–C bond lengths of 2.899(1) and 2.108(7) Å have been determined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号