首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fluorescent probes play a key role in modern biomedical research. As compared to inorganic quantum dots (QDs) composed with heavy metal elements, organic dye-based fluorescent nanoparticles have higher biocompatibility and are richer in variety. However, traditional organic fluorophores tend to quench fluorescence upon aggregation, which is known as aggregation-caused quenching (ACQ) effect that hinders the fabrication of highly emissive fluorescent nanoparticles. In this work, we demonstrate the synthesis of organic fluorescent dots with aggregation-induced emission (AIE) in far-red/near-infrared (FA/NIR) region. A conventional ACQ-characteristic fluorescent dye, 3,4:9,10-tetracarboxylic perylene bisimide (PBI), is converted into an AIE fluorogen through attaching two tetraphenylethylene (TPE) moieties. The fluorescent dots with surface folic acid groups are fabricated from PBI derivative (DTPEPBI), showing specific targeting effect to folate receptor-overexpressed cancer cells. In vivo studies also suggest that the folic acid-functionalized AIE dots preferentially accumulate in the tumor site through enhanced permeability and retention (EPR) effect and folate receptor-mediated active targeting effect. The low cyto-toxicity, good FR/NIR contrast and excellent targeting ability in in vitro/in vivo imaging indicate that the AIE dots have great potentials in advanced bioimaging applications.  相似文献   

2.
3.
许瑶  宋雪旦  郝策 《分子科学学报》2020,(1):16-22,I0002
基于密度泛函理论(DFT)和含时密度泛函理论(TD-DFT),探究了发光共价有机骨架LCOF-NDT1与甲醛之间的分叉氢键作用.发现LCOF-NDT1与甲醛氢键作用后发光机理发生改变.氢键复合物的电子激发能减小,激发态下的氢键键长变短,氢键质子供体的~1H-NMR移向高场,氢键质子供体和受体的振动频率发生红移,均表明电子激发态下的氢键增强.氢键复合物的荧光速率系数减小,内转换速率系数增大,阐明电子激发态下氢键的增强有利于非辐射跃迁,不利于辐射跃迁,从而导致LCOF-NDT1荧光减弱或猝灭.计算结果表明LCOF-NDT1在荧光识别甲醛方面有潜在的应用前景.  相似文献   

4.
The use of steady state fluorescence spectroscopy in the detection and monitoring of potential photochemotherapeutic agents is examined. Problems associated with both in vitro and in vivo fluorescence measurements are investigated, and typical data are presented. Recent results on the use of fluorescence in pharmacokinetic studies are discussed, and the relative merits of in vitro vs. in vivo methods are outlined.  相似文献   

5.
Osteoclasts are giant polykaryons responsible for bone resorption. Because an enhancement or loss of osteoclast function leads to bone diseases such as osteoporosis and osteopetrosis, real-time imaging of osteoclast activity in vivo can be of great help for the evaluation of drugs. Herein, pH-activatable chemical probes BAp-M and BAp-E have been developed for the detection of bone-resorbing osteoclasts in vivo. Their acid dissociation constants (pK(a)) were determined as 4.5 and 6.2 by fluorometry in various pH solutions. These pK(a) values should be appropriate to perform selective imaging of bone-resorbing osteoclasts, because synthesized probes cannot fluoresce intrinsically at physiological pH and the pH in the resorption pit is lowered to about 4.5. Furthermore, BAp-M and BAp-E have a bisphosphonate moiety that enabled the probes to localize on bone tissues. The hydroxyapatite (HA) binding assay in vitro was, therefore, performed to confirm the tight binding of the probes to the bone tissues. Our probes showed intense fluorescence at low pH values but no fluorescence signal under physiological pH conditions on HA. Finally, we applied the probes to in vivo imaging of osteoclasts by using intravital two-photon microscopy. As expected, the fluorescence signals of the probes were locally observed between the osteoclasts and bone tissues, that is, in resorption pits. These results indicate that our pH-activatable probes will prove to be a powerful tool for the selective detection of bone-resorbing osteoclasts in vivo, because this is the first instance where in vivo imaging has been conducted in a low-pH region created by bone-resorbing osteoclasts.  相似文献   

6.
A bifunctional ligand that is capable of forming Re and 99mTc complexes as complementary fluorescent and radioactive probes was developed. The tridentate bis(quinoline) amine ligand, which is referred to as the SAACQ system, was prepared in a single step from Fmoc protected lysine in high yield. Reaction of the SAACQ ligand with [Re(CO)3Br3]2- resulted in the formation of the SAACQ-(Re(CO)3)+complex which exhibits favorable fluorescence properties including a long lifetime and a large Stoke's shift. Because the SAACQ ligand is derived from an amino acid, it can readily be linked to or incorporated within peptides as a means of targeting the probe to specific receptors. To demonstrate this feature, the SAACQ ligand and the SAACQ-Re complex were incorporated into fMLFG, a peptide that binds to the formyl peptide receptor (FPR). Uptake of the fMLF[(SAACQ-Re(CO)3)+]G conjugate into human leukocytes in vitro was visualized by fluorescence microscopy, and the observed distribution of the peptide was similar to that of a well-established fluorescent FPR probe. The corresponding Tc complex, fMLF[(SAACQ-99mTc(CO)3)+]G, was prepared in excellent yield from [99mTc(CO)3(OH2)3]+, which affords the opportunity to correlate the results of the microscopy experiments with in vivo radioimaging studies because the probes are isostructural.  相似文献   

7.
Based on the findings that the azo functional group has excellent properties as the hypoxia-sensor moiety, we developed hypoxia-sensitive near-infrared fluorescent probes in which a large fluorescence increase is triggered by the cleavage of an azo bond. The probes were used for fluorescence imaging of hypoxic cells and real-time monitoring of ischemia in the liver and kidney of live mice.  相似文献   

8.
Pantetheinase is an amidohydrolase that cleaves pantetheine into pantothenic acid and cysteamine. Functional studies have found that ubiquitous expression of this enzyme is associated with many inflammatory diseases. However, the lack of near-infrared fluorescence probes limits the better understanding of the functions of the enzyme. In this work, we have developed a new near-infrared fluorescence probe, CYLP, for bioimaging of pantetheinase by using pantothenic acid with a self-immolative linker as a recognition group. The probe produces a sensitive fluorescence off–on response at 710 nm to pantetheinase with a detection limit of 0.02 ng mL−1 and can be used to image the intraperitoneal pantetheinase activity in mice in vivo. Moreover, with the probe we have observed that pantetheinase is significantly increased in the tissues of mouse inflammatory models as well as in the intestines of mice with inflammatory bowel disease. Therefore, CYLP may provide a convenient and intuitive tool for studying the role of pantetheinase in diseases.

A near-infrared fluorescence probe for detecting pantetheinase activity has been used for imaging pantetheinase in mice with inflammatory bowel disease.  相似文献   

9.
Near-infrared gold-doped CdHgTe quantum dots (QDs) with improved photoluminescence and biocompatibility were developed using an aqueous solution route with l-glutathione and l-cysteine as stabilizers. As-prepared Au:CdHgTe QDs were covalently linked to arginine–glycine–aspartic acid (RGD) peptide, anti-epidermal growth factor receptor (EGFR) monoclonal antibody (MAb), and anti- carcinoembryonic antigen-related cell adhesion molecule-1 (CEACAM1) MAb separately. Three Au:CdHgTe QD bioconjugates (QD800-RGD, QD820-anti-CEACAM1, and QD840-anti-EGFR) were successfully used as probes for in vivo tumor-targeted multispectral fluorescence imaging of xenografts. Fluorescence signals from the QD bioconjugates used to detect three tumor markers were spectrally unmixed, and their co-localization was analyzed. The results indicate that multiple tumor markers could be simultaneously detected by multispectral fluorescence imaging in vivo using QD bioconjugates as probes. This approach has excellent potential as an imaging method for the noninvasive exploration and detection of multiple tumor markers in vivo, thereby substantially aiding the diagnosis of cancer.  相似文献   

10.
Near-infrared fluorescent silica-porphyrin hybrid nanotubes (HNTs) were successfully synthesized by π-π stacking, electrostatic interaction and a sol-gel reaction. The HNTs-labeled macrophages were detected in vivo, and the minimum detectable number of cells was 200. Furthermore, the biodistribution of HNTs-labeled macrophages was tracked by fluorescence imaging.  相似文献   

11.
A Thiazole Orange conjugated with folate derivative was synthesized in two steps. Firstly, folate was coupled with 1-(3-aminopropyl)-4-methylquinolinium bromide to afford folate-methylquinolinium bromide, which then reacted with benzothiazolium to obtain the title folate-conjugated compound. The compound was evaluated by 1H-NMR MS, TG/DTA and fluorescence spectroscopic methods. The title compound could selectively target folate receptor expressing tumors according to the in vivo fluorescence imaging preliminarily performed on nude mice with breast tumors.  相似文献   

12.
Quantum dots (QDs), also named semiconductor nanocrystals, have initiated a new realm of bioscience by combining nanomaterials with biology, which will profoundly influence future biological and biomedical research. In this review, we describe the extraordinary optical properties of QDs and developments in methods for their synthesis. We focus on fluorescent imaging with QDs both in vitro and in vivo, and the cytotoxicity of QDs and potential barriers to their use in practical biomedical applications. Finally, we provide insights into improvements aimed at decreasing the cytotoxicity of QDs and the future outlook of QD applications in biomedical fields.
Figure
The unique tunable optical and chemical properties of QDs have been exploited in a growing array of biomedical applications including clinical diagnostics and molecular, cellular, and tumor imaging  相似文献   

13.
Using fluorescence imaging, the tissue-localizing properties of five photosensitizers were studied in vivo in tumours in 'sandwich' observation chambers and in tumours growing on thigh muscle. The preliminary results indicate that of the three photodynamically active dyes tested (haematoporphyrin derivative, Photofrin II and aluminium phthalocyanine tetrasulphonate), the phthalocyanine possesses the best tumour-localizing properties. This makes it possible to combine tumour fluorescence detection and photodynamic therapy with reduced skin photosensitivity. The two photodynamically inactive dyes tested (uroporphyrin I and acridine red) may be useful for application in fluorescence imaging to localize superficial tumours without inducing skin photosensitivity. In particular, acridine red has remarkable tumour-localizing properties, but is rather toxic.  相似文献   

14.
Absorption, fluorescence and laser properties of ten selected aromatic compounds from the oligophenylene family are studied experimentally at room temperature (293 K). The first eight compounds are arranged in such way that odd numbered compounds reveal 1Lb --> 1A fluorescence, while even numbered compounds show 1La --> 1A fluorescence. All compounds are family related in pi-structure and are of the same degree of planarity and rigidity. The quantum yield of fluorescence, gamma, and the decay times, tau(f), of non-deaerated and deaerated cyclohexane solutions are measured. The oscillator strength, f(e), the fluorescence rate constant, Kf, natural lifetimes, tau(o)T, and intersystem crossing rate constant, K(ST), are calculated. The lowest 1Lb and 1La singlet and 3La, triplet (77 K) levels are determined. Investigations showed that transition from a polyphenyl molecule which shows 1La --> 1A fluorescence to a family related in the pi-structure molecule which reveals the 1Lb --> 1A fluorescence is accompanied by certain changes in all the fluorescence parameters. This indicates that gamma decreases, tau(f) increases, Kf and the FWRE of the fluorescence spectrum decrease. Moreover, K(ST) also decreases, sometimes very significantly. The decrease in the K(ST) value is explained by the fact that matrix elements of the spin-orbit coupling of the S alpha and Ti states are much lower in value than analogous elements of the spin-orbit coupling of Sp and Ti states. It is shown that all p-polyphenyles exhibit excellent laser action, while m-polyphenyles do not produce laser oscillation under any conditions. The values of K(ST) and other fluorescence parameters measured can be used for various practical purposes and theoretical considerations.  相似文献   

15.
16.
This paper reports the systematic investigation of europium doped hydroxyapatite (Eu:HAp). A set of complementary techniques, namely Fourier Transform Infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM) and the Brunauer-Emmett-Teller (BET) technique were used towards attaining a detailed understanding of Eu:HAp. The XPS analysis confirmed the substitution of Ca ions by Eu ions in the Eu:HAp samples. Secondly, Eu:HAp and pure HAp present type IV isotherms with a hysteresis loop at a relative pressure (P/P0) between 0.4 and 1.0, indicating the presence of mesopores. Finally, the in vitro biological effects of Eu:HAp nanoparticles were evaluated by focusing on the F-actin filament pattern and heat shock proteins (Hsp) expression in HEK293 human kidney cell line. Fluorescence microscopy studies of the actin protein revealed no changes of the immunolabelling profile in the renal cells cultured in the presence of Eu:HAp nanoparticles. Hsp60, Hsp70 and Hsp90 expressions measured by Western blot analysis were not affected after 24 and 48 hours exposure. Taken together, these results confirmed the lack of toxicity and the biocompatibility of the Eu:HAp nanoparticles. Consequently, the possibility of using these nanoparticles for medical purposes without affecting the renal function can be envisaged.   相似文献   

17.
A strategy is presented that involes coupling Na(2)SeO(3) reduction with the binding of silver ions and alanine in a quasi-biosystem to obtain ultrasmall, near-infrared Ag(2)Se quantum dots (QDs) with tunable fluorescence at 90 °C in aqueous solution. This strategy avoids high temperatures, high pressures, and organic solvents so that water-dispersible sub-3 nm Ag(2)Se QDs can be directly obtained. The photoluminescence of the Ag(2)Se QDs was size-dependent over a wavelength range from 700 to 820 nm, corresponding to sizes from 1.5 ± 0.4 to 2.4 ± 0.5 nm, with good monodispersity. The Ag(2)Se QDs are less cytotoxic than other nanomaterials used for similar applications. Furthermore, the NIR fluorescence of the Ag(2)Se QDs could penetrate through the abdominal cavity of a living nude mouse and could be detected on its back side, demonstrating the potential applications of these less toxic NIR Ag(2)Se QDs in bioimaging.  相似文献   

18.
19.
20.
The colon specific drug delivery systems based on polysaccharides; locust bean gum and chitosan in the ratio of 2 : 3, 3 : 2 and 4 : 1 were evaluated using in vitro and in vivo methods. The in vitro studies in pH 6.8 phosphate buffer containing 2% w/v rat caecal contents showed that the cumulative percentage release of mesalazine after 26 h were 31.25+/-0.56, 46.25+/-0.96, 97.5+/-0.26 (mean+/-S.D.), respectively. The in vivo studies conducted in nine healthy male human volunteers for the various formulations revealed that, the drug release was initiated only after 5 h (i.e.) transit time of small intestine and the bioavailability (AUC(0-->t*)) of the drug was found to be 85.24+/-0.10, 196.08+/-0.12, 498.62+/-0.10 microg x h/ml 26 (mean+/-S.D.), respectively. These studies on the polysaccharides demonstrated that the combination of locust bean gum and chitosan as a coating material proved capable of protecting the core tablet containing mesalazine during the condition mimicking mouth to colon transit. In particular, the formulation containing locust bean gum and chitosan in the ratio of 4 : 1 held a better dissolution profile, higher bioavailability and hence a potential carrier for drug targeting to colon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号