首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dynamic properties such as shear modulus, loss modulus, and loss factor were obtained at a low strain amplitude over a wide range of frequencies and temperatures on vulcanizates filled with carbon black, silica, and carbon–silica dual‐phase filler. The data were shifted along the frequency scale. Instead of a single smooth master curve, a pseudomaster curve with a feather‐like structure is obtained. This effect is especially pronounced for the loss factor. Multiple factors may be responsible for this. Among others, filler networking and polymer–filler interaction may play a dominant role. The effect of the carbon–silica dual‐phase filler on the overall dynamic properties of the vulcanizates is similar to that of silica. Their tan δ values are much lower at lower frequencies and are relatively higher at higher frequencies. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 1240–1249, 2000  相似文献   

2.
Without the use of any curatives, silica filled BIMS compounds can achieve tensile strength and bound rubber level close to conventional crosslinked elastomer compounds. This outstanding tensile performance of silica filled BIMS compounds results from the strong interaction between BIMS polymer and silica filler. Silica filled BIMS compounds can be reprocessed and still retain their high tensile strength performance. The good compatibility between BIMS and silica also leads to better filler dispersion and inhibition of filler-filler interaction. This in turn leads to the lower processing viscosity observed. We speculate that BIMS can interact with silica via nucleophilic substitution reaction between benzylic bromide of the polymer and surface silanol group of silica.  相似文献   

3.
Poly(vinylidene fluoride) (PVDF) was incorporated in situ with silica by a sol-gel process involving tetraethoxysilane. The mechanical properties of these in situ hybrids were compared with those of PVDF composites mechanically blended with 14-nm diameter fumed silica particles. The ultimate strength of the in situ hybrids was higher than that of the blend composites, since fumed silica particles aggregate and act as mechanically weak points. The thermal analysis, dynamic viscoelastic properties, and dielectric properties were compared. The β-relaxation of PVDF caused by the glass transition was observed at around −40°C in the differential scanning calorimetry (DSC) and the mechanical tan δ curves and at −30°C in the dielectric loss factor (ϵ”) curve. The αc-relaxation due to the molecular motion in the crystalline phase occurred at 61°C in DSC curve, at 100°C in the tan δ curve, and at 80°C in the ϵ” curve. The peak positions of these relaxations did not change, but the peak intensities were decreased with the increase in silica content for both the in situ hybrids and blend composites. The activation energies for PVDF were calculated as 136 kJ/mol for the β-relaxation and 96 kJ/mol for the αc-relaxation. The result that these activation energies did not depend on silica content may indicate the weak interaction between PVDF and silica.  相似文献   

4.
The morphological structure and mechanical properties of the star‐shaped solution‐polymerized styrene‐butadiene rubber (SSBR) and organically modified nanosilica powder/star‐shaped SSBR co‐coagulated rubber (N‐SSBR) both filled with silica/carbon black (CB) were studied. The results showed that, compared with SSBR, silica powder could be mixed into N‐SSBR much more rapidly, and N‐SSBR/SiO2 nanocomposite had better filler‐dispersion and processability. N‐SSBR/SiO2/CB vulcanizates displayed higher glass‐transition temperature and lower peak value of internal friction loss than SSBR/SiO2/CB vulcanizates. In the N‐SSBR/SiO2/CB vulcanizates, filler was dispersed in nano‐scale resulting in good mechanical properties. Composites filled with silica/CB doped filler exhibited more excellent mechanical properties than those filled with a single filler because of the better filler‐dispersion and stronger interfacial interaction with macromolecular chains. N‐SSBR/SiO2/CB vulcanizates exhibited preferable performance in abrasion resistance and higher bound rubber content as the blending ratio of silica to CB was 20:30. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

5.
The effects of filler loading and a new silane coupling agent 3‐octanoylthio‐1‐ propyltriethoxysilane (NXT silane) on the polymer‐filler interaction and mechanical properties of silica‐filled and carbon black‐filled natural rubber (NR) compounds were studied. Silica (high dispersion silica7000GR, VN2, and VN3) and carbon black (N330) were used as the fillers, and the loading range was from 0 to 50 phr. The loading of NXT silane was from 0 to 6 phr. Experimental results show that the maximum and minimum torques of silica and carbon black‐filled NR increase with increasing filler loading. With increasing filler loading, the scorch time and optimum cure time decrease for carbon black‐filled NR, but increase for silica‐filled NR. The minimum torque, scorch time, and optimum cure time decrease because of the presence of NXT silane. For the carbon black and silica‐filled NR, the tensile strength and elongation at break have maximum values, but the hardness, M300, M100, and tear strength keep increasing with filler loading. The mechanical properties of silica‐filled NR were improved in the presence of NXT silane. With increasing filler loading, the storage modulus of filled NR increases, but the loss factor decreases. Carbon black shows the strongest polymer‐filler interaction, followed by VN3, 7000GR, and VN2. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 573–584, 2005  相似文献   

6.
The linear viscoelastic behavior in dynamic shear and tensile creep at temperatures from −30 to 70 °C is measured for an styrene–butadiene rubber (SBR) elastomer cured with dicumyl peroxide to crosslinking densities between 0 and 23.5 × 10−5 mol/cm3. The G′, G″, and tan δ isotherms are analyzed by time–temperature superposition (TTS), where the tan δ master curves are consistent with those of Mancke and Ferry. However, to achieve the TTS in the lightly crosslinked SBR systems, an anomalous vertical shift is required in the narrow temperature region from 10 to 30 °C. The vertical shift factor in this temperature region is not the standard from rubber elasticity. No anomalous behavior is detected in the equilibrium modulus, which is a linear function of temperature in accordance with the classical theory of rubber elasticity. In contrast to SBR, standard vertical shifts are required to effect TTS for uncrosslinked polybutadiene and an ethylene propylene diene monomer elastomer. © 2013 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2013  相似文献   

7.
本文研究了硅烷偶联剂原位改性白炭黑对溶聚丁苯橡胶(SSBR)性能的影响,结果表明,通过哈克转矩流变仪对含有偶联剂的SSBR/白炭黑混炼胶进行原位热处理后可明显减弱混炼胶的Payne效应,改善白炭黑在橡胶基体中的分散.原位热处理方法能够明显提高硫化胶的300%定伸应力,降低动态压缩温升,同时可使硫化胶在0℃附近具有较高的损耗因子(tanδ),60℃附近具有较低的tanδ.对不同聚合方式得到的丁苯橡胶,即溶聚丁苯橡胶与乳聚丁苯橡胶(ESBR)/白炭黑复合材料的力学性能及动态力学性能进行了研究,结果表明,白炭黑在SSBR2305中分散效果优于在ESBR1502中;采用偶联剂原位改性白炭黑可以使SSBR2305硫化胶获得与ESBR1502硫化胶相当的物理机械性能,更理想的动态力学性能,从而得到力学性能、抗湿滑性、滚动阻力及耐磨性更加均衡的理想轮胎材料.通过对具有不同偶联效率的SSBR/白炭黑体系的微观结构与性能研究发现,随偶联效率的增加,其结合橡胶含量增加,Payne效应减弱;高偶联效率的S-SBR具有较低的动态压缩温升及较好的耐磨性.  相似文献   

8.
Highly filled thermosets are used in applications such as integrated circuit (IC) packaging. However, a detailed understanding of the effects of the fillers on the macroscopic cure properties is limited by the complex cure of such systems. This work systematically quantifies the effects of filler content on the kinetics, gelation and vitrification of a model silica‐filled epoxy/amine system in order to begin to understand the role of the filler in IC packaging cure. At high cure temperatures (100°C and above) there appears to be no effect of fillers on cure kinetics and gelation and vitrification times. However, a decrease in the gelation and vitrification times and increase the reaction rate is seen with increasing filler content at low cure temperatures (60‐90°C). An explanation for these results is given in terms of catalysation of the epoxy amine reaction by hydrogen donor species present on the silica surface and interfacial effects.  相似文献   

9.
The viscosity, cure properties, storage, and loss moduli and tan δ of natural rubber (NR) filled with the same amounts of precipitated silica (PSi) and fly ash silica (FASi) fillers were measured. The fillers were treated with bis[3‐triethoxysilylpropyl‐]tetrasulfide (TESPT), or, used in the rubber untreated. TESPT is a sulfur‐containing bi‐functional organosilane that chemically adheres silica to rubber and also prevents silica from interfering with the reaction mechanism of sulfur cure. The dispersion of PSi and FASi in the rubber was investigated using scanning electron microscope (SEM). The effects of silica type and loading and surface treatment on the aforementioned properties were of interest. The SEM results showed that the FASi particles were larger in size and had a wider particle size distribution when compared with the PSi particles. The viscosity of the compounds decreased progressively with mixing time, and the compounds with FASi had a lower viscosity than those filled with PSi. The treatment with Si69 had no beneficial effect on the dispersion of the fillers in the rubber matrix. At low temperatures, the type and loading of the filler had no effect on the storage and loss moduli of the compounds, but the effect was more pronounced at high temperatures. There was also evidence from the tan δ and glass transition temperature (Tg) measurements that some limited interaction between the filler particles and rubber had occurred because of TESPT. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

10.
Dynamic mechanical properties of the ultrahigh molecular weight nylon 66 film and fiber produced by thermally induced solid-state polycondensation are presented. The α peak temperature of tan δ of these treated films and fibers is shifted 8–32°C higher than that of the appropriate control nylon 66 (film and fiber) while the maximum height of the tan δ peaks is decreased. The treated fibers have higher moduli at all temperatures (20–145°C) and humidities (30% RH) than do their control counterparts. The moduli of the treated fibers at 30% RH compare favorably with control yarn at 0% RH. These yarns also have a greater per cent of the 25°C modulus retention as temperature increases.  相似文献   

11.
The main objective of the present study was to investigate the synergistic effect of simultaneous use of two reinforcing fillers in rubber compounds based on acrylonitrile-butadiene copolymer (NBR). Silica was used as reinforcing filler in all samples and the loading content was 25 phr. 3 and 5 phr of multiwall carbon nanotubes (MWCNT) were used as second reinforcing filler in NBR/silica compounds. Melt mixing method was employed for compound preparation. The effects of carbon nanotube/silica hybrid filler on mechanical and vulcanization characteristics of the rubber compounds were investigated. These results revealed that addition of the reinforcing filler, either carbon nanotube or silica, shortened the optimum cure time (t90) and also scorch time (ts1) of samples compared to that of pure NBR compound. In hybrid compounds, the reduction in optimum cure time and scorch time was higher than that of for silica-filled NBR or CNT-filled NBR compounds. This can be attributed to the synergistic effect between CNT and silica as two reinforcing agents in NBR compounds. Regardless the composition of the reinforcing filler, an increase of the relaxed storage modulus is observed, while the tan δ value is decreased steadily. The dynamic modulus reinforcement of nanocomposites was examined by the Guth Gold and Modified Guth Gold equations. For hybrid samples, the experimental values show a significant positive deviation from model predictions. According to the Barlow’s formula, hybrid compounds show higher burst strength compared to silica or CNT filled NBR compounds.  相似文献   

12.
The reinforcement and nonlinear viscoelastic behavior have been investigated for silica (SiO2) filled solution‐polymerized styrene butadiene rubber (SSBR). Experimental results reveal that the nonlinear viscoelastic behavior of the filled rubber is similar to that of unfilled SSBR, which is inconsistent with the general concept that this characteristic comes from the breakdown and reformation of the filler network. It is interesting that the curves of either dynamic storage modulus (G′) or loss tangent (tan δ) versus strain amplitude (γ) for the filled rubber can be superposed, respectively, on those for the unfilled one, suggesting that the primary mechanism for the Payne effect is mainly involved in the nature of the entanglement network in rubbery matrix. It is believed there exists a cooperation between the breakdown and reformation of the filler network and the molecular disentanglement, resulting in enhancing the Payne effect and improving the mechanical hysteresis at high strain amplitudes. Moreover, the vertical and the horizontal shift factors for constructing the master curves could be well understood on the basis of the reinforcement factor f(φ) and the strain amplification factor A(φ), respectively. The surface modification of SiO2 causes a decrease in f(φ), which is ascribed to weakeness of the filler–filler interaction and improvement of the filler dispersion. However, the surface nature of SiO2 hardly affects A(φ). © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 2594‐2602, 2007  相似文献   

13.
The partial replacement of silica by high specific surface area and high structure Carbon Black (CB) N134 as secondary filler, keeping the same total filler content at 55 phr, shows a clear synergistic effect on overall performance. At low content of CB, i.e. in the range of 0–36 wt% of CB relative to total filler amount, the Payne effect and tan delta at both 0 °C and 60 °C change marginally, but thereafter gradually increase. Cure times are shortened in the presence of CB, facilitating an increase of productivity. Bound rubber content and mechanical properties show an optimum at 18 wt% of CB relative to total filler amount or at a ratio of silica/CB 45/10 phr. With regard to tire performance as indicated by the laboratory test results, the abrasion resistance, wet grip and ice traction can therefore be enhanced while maintaining the tire rolling resistance at the optimum level for this silica/CB ratio.  相似文献   

14.
Cerium oxide‐filled high density polyethylene (HDPE) composites for microwave substrate applications were prepared by sigma‐blend technique. The HDPE was used as the matrix and the dispersion of CeO2 in the composite was varied up to 0.5 by volume fraction, and the dielectric properties were studied at 1 MHz and microwave frequencies. The variations of thermal conductivity (keff), coefficient of thermal expansion (αc) and Vicker's microhardness with the volume fraction of the filler were also measured. The relative permittivity (εeff) and dielectric loss (tan δ) were found to increase with increase in CeO2 content. For 0.4 volume fraction loading of the ceramic, the composite had εeff = 5.7, tan δ = 0.0068 (at 7 GHz), keff = 2.6 W/m °C, αc = 98.5 ppm/°C, Vicker's microhardness of 18 kg/mm2 and tensile strength of 14.6 MPa. Different theoretical approaches have been used to predict the effective permittivity, thermal conductivity, and coefficient of thermal expansion of composite systems and the results were compared with the experimental data. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 998–1008, 2010  相似文献   

15.
The integrals of the linear loss shear modulus vs. temperature (loss area, LA) and linear tan δ vs. temperature (tan δ area, TA) were characterized for various core/shell latex particles with synthetic rubber, poly(butadiene-stat-styrene) [P (Bd/S), 90/10], and interpenetrating polymer networks (IPN) as the cores. The IPN cores were composed of P(Bd/S) (Tg ≃ − 70°C) and an acrylate based copolymer (Tg around 10°C) for potential impact and damping improvement in thermoplastics. Poly(styrene-stat-acrylonitrile) (SAN, 72/28) was the shell polymer for all these polymers. Under the same loading, for both toughening and damping controls, among the IPN core/shell, blend of separate core/shell, and multilayered core/shell polymers, the IPN core/shell polymers were the best dampers. However, the other core/shell polymers also showed higher LA values than P(Bd/S)/SAN core/shell polymer. A comparison of LA values via a group contribution analysis method was made, the effect of particle morphology and phase continuity on damping being studied. Inverted core/shell latex particles (glassy polymer SAN was synthesized first) showed much higher LA and TA values than normal core/shell ones (rubbery polymer was synthesized first). Models for maximum LA and TA behavior are proposed. The damping property was essentially controlled by the phase miscibility and morphology of the core/shell latex particles. The LA values for each peak in these multiphase materials provided some indication of the several fractional phase volumes. © 1997 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 35 : 1501–1514, 1997  相似文献   

16.
Natural rubber based composites were prepared by incorporating Wood flour of two different particle size ranges (250–300 µm) and (300–425 µm) and concentrations (15 and 30 phr) into the matrix, using a Banbury® internal mixer according to a base formulation. Curing characteristics of the samples were studied. Influence of particle size and loading of filler on the properties of the composites was analyzed. Results obtained show that the addition of wood flour to natural rubber increased scorch time and curing time and caused improvement in modulus at 300% strain and in tear properties. However, it decreased tensile strength and elongation at break. The particle size range of 300–425 µm was found to offer the best overall balance of mechanical and dynamic properties (tan δ and viscous torque). Swelling behavior of the composites in toluene was also analyzed in order to determine the rubber volume fraction and crosslinking density. Composites with the bigger particle size wood flour were found to have greater crosslinking density than the ones with smaller particle size, fact that could possibly indicate a better rubber-filler interaction in the former. Major percentage of filler increased slightly this interaction. Water absorption behavior of the composites with wood flour reached a maximum of 12% w/w when 30 phr of filler were incorporated; nonetheless, particle size did not affect this property. The ageing study in presence of air at 70 °C revealed that natural rubber composites with wood flour maintained the same classification cell with temperature as the pure rubber. A compound with 30 phr of carbon black was prepared for comparative purposes. Results obtained were as expected. Scorch time decreased and higher values of modulus at 300% strain and tensile strength were achieved, due to strongest interaction between filler and elastomer.  相似文献   

17.
The network formed by fillers has great influence on the mechanical properties of rubber materials. To understand the formation of network by carbon black,silica,and carbon black/silica mixing fillers in rubber and its influence on the properties of rubber,isoprene rubber/filler composites with different filler loadings are prepared and their micromorphology,rheological and tensile properties are investigated. It is found that the dispersion of fillers is better in rubber after cure than that in rubber before cure for all three rubber systems,and the filler size of silica is smaller than that of carbon black,but the aggregation is more severe in silica filled rubber system. In mixed filler system,the two fillers tend to aggregate separately, leading to the low modulus at small strain than that in single filler system. With the increase of the filler loading,the tensile strength increases first and then decreases,the elongation at break decreases,and the temperature rise in compression flexometer tests increases. Moreover,the temperature rise in mixed filler system is higher than that in single filler system at high filler loading. © 2022, Science Press (China). All rights reserved.  相似文献   

18.
Filled EPDM materials have been processed and aged by gamma radiation at ambient temperature and at 80 °C to study the influence of the fillers presence in the material degradation. The acceleration of the polymer degradation by the ATH fillers, evidenced when irradiation is performed at 25 °C, is also effective at 80 °C. In addition, in the case of silica‐filled EPDM, the creation of strong filler‐matrix bonds, already reported for irradiation at 25 °C, is also thermally activated; this enables to this material to keep its integrity at high irradiation dose, whereas the irradiated ATH‐filled EPDM is so degraded that it flows. Thus, the introduction of fillers in the polymer has an impact on its resistance to irradiation, whatever the temperature at which the irradiation is performed. Moreover, the consequences of the degradation on the evolution of the mechanical properties of the composite are very dependent on the filler nature. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 1319–1328, 2010  相似文献   

19.
The decay of the 1,4-polybutadiene absorbance (infra-red) was found to correlate with the decrease in tan δ at ?80°C during the photo- and thermal oxidation of ABS. Both parameters correlate with loss of impact resistance.  相似文献   

20.
0.5–3 wt% nanosilica was added to an epoxy resin based on diglycidyl ether of bisphenol A (DGEBA) and cured at 25, 40 or 60 °C using isophoronediamine (IPDA) as hardener. Aggregates of nanosilica were properly dispersed into the DGEBA-IPDA resin and agglomerates formation was avoided. Addition of nanosilica increased the storage modulus E′ and the area and height of the tan δ curve of DGEBA-IPDA resin cured at 25 °C, but no significant differences were found by curing at higher temperature. Gel time measurements and the results obtained by applying the Kamal model to isotherm DSC curing of DGEBA-IPDA-nanosilica revealed that nanosilica catalysed the curing reaction between DGEBA and IPDA, in less extent by increasing the curing temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号