首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
[{(CH3)3Si}3C–Li–C{Si(CH3)3}3][Li · 3(OC4H8)] and {(CH3)3Si}3C–Li · O=C(Si(CH3)3)2, two New Adducts of Lithium Trisylmethanide Sublimation of (Tsi–Li) · 2 THF (Tsi = –C(Si(CH3)3)3) at 180 °C and 10–4 hPa gives (Tsi–Li) · 1.5 THF in very low yield. The X‐ray structure determination shows an almost linear [Tsi–Li–Tsi] anion connected by short agostic Li…C contacts with the threefold THF‐coordinated Li‐cation. Base‐free Tsi–Li, solved in toluene is decomposed by oxygen, forming the strawberry‐colored ketone O=C(SiMe3)2, which forms an 1 : 1 adduct with undecomposed Tsi–Li. The X‐ray structure elucidation of this compound is also discussed.  相似文献   

2.
The Crystal Structure of [Li · 11/3 H2O · C7H8][{(CH3)3Si}3C–GaI3], a Stable Hydrate of Lithium Tris(trimethylsilyl)methyl Triiodogallate Water‐free Li[Tsi–GaI3], prepared from gallium triiodide and base‐free Tsi–Li (Tsi = –C(SiMe3)3) in toluene, which has been recrystallized several times from humid toluene, c‐hexane, benzene and toluene again gives the water‐containing title compound. According to the X‐ray structure determination this product crystallizes in the monoclinic space group P21/c and consists of three‐membered units of [Tsi–GaI3]‐anions forming an asymmetric triangle and a related chain of three Li cations, four fold but dissimilar coordinated by the oxygen atoms of 4 water molecules, the iodligands of different anions and a h2‐bonded toluene molecule, respectively.  相似文献   

3.
Crystal Structures of TMEDA Adducts and of Salts with Protonated TMEDA Molecules The reaction of TMEDA with two equivalents of [BH3(SMe2)] in toluene at 20 °C gives the adduct [TMEDA(BH3)2] ( 1 ). A similar reaction of pyrrolidine with [BH3(SMe2)] in a molar ratio of 1:1 leads to the adduct [pyrrolidine(BH3)] ( 2 ). TMEDA can be introduced into the coordination sphere of In3+ by the treatment of InI3 with TMEDA in toluene to give the complex [InI(TMEDA)] ( 3 ). The salt [HTMEDA]I ( 4 ), containing a mono‐protonated TMEDA molecule, is the result of the reprotonation of [NH4]I and TMEDA in toluene at 20 °C. The salts [H2TMEDA]—[InCl4(TMEDA)]2 ( 5 ) and [H2TMEDA][InCl5(THF)] ( 6 ) are formed in the reaction mixtures TMEDA/toluene/InCl3/HCl and TMEDA/toluene/THF/InCl3/HCl, respectively, whereupon 6 was characterized more closely. Crystals of [In5I6(OH)(TMEDA)4]I·2, 5toluene ( 7 ·2.5toluene) can be obtained after treatment of InI3 with non‐dried TMEDA; 4 was identifed as by‐product. 1 — 7 ·2.5toluene were partially investigated by NMR methods and vibrational spectroscopy. In all cases a characterization by single crystal X‐ray diffraction was performed. According to this, all nitrogen atoms in 1 and 2 are coordinated by BH3 groups leading to a distorted tetrahedral environment at the nitrogen and the boron atoms. In 3 a distorted trigonal‐bipyramidal coordination sphere at the In3+ is present. The apical positions are occupied by I3 and N3. Strong N‐H···N bridges, running along [001] is the feature in 4 ; the I—‐Ions are not involved into the system of H‐bridges. A ion triple, [H2TMEDA][InCl4(TMEDA)]2, hold together by bifurcated H‐bridges is the dominating structural motif in 5 , whereas alternation bifurcated and linear H‐bridges, leading zu a zig‐zag chain along [100], is the build‐up principle of 6 . In 7 ·2.5toluene a complex In5O8 skeleton was formed, consisting of a virtual corner‐connected doubled heterocubane. At every heterocubane a corner, occupied by a metal ion, is missing. The coordination spheres of the In atoms of the complex cation are completed by TMEDA molecules and iodide ions.  相似文献   

4.
Aryl and Aryne Complexes of Group Six Transition Metals. Preparation of [Mo(p-C6H4CH3)6(Li · OC4H10)3] und [W(p-C6H4CH3)4(C6H3CH3)2(Li · OC4H10)4] and NMR Spectroscopic Investigation of the W Complex Molybdenum(V) chloride reacts with an etheral solution of p-tolyllithium (molar ratio 1:10) to yield a yellow, strongly paramagnetic hexatolylo complex ([MoTol6(Li · S)3]1) (μeff = 3.51 B.M.), while from tungsten(V) bromide and p-tolyllithium (molar ratio 1:11) a blackish violet, diamagnetic complex [WTol4Tn2(Li · S)4] is formed, containing two tolylene or tolyne groups for ligands. The 1H-NMR spectrum points to the Tol-ligands being influenced by the methyl groups of the Tn-ligands.  相似文献   

5.
Benzyl-tris(trimethylsilyl)methyl Tin Dihalides, {(CH3)3Si}3C(C6H5–CH2)SnHal2 with Hal = Cl, Br, I The tin tetrahalides SnHal4 (Hal = Cl, Br, I) react with base-free tris(trimethylsilyl)methyllithium (Tsi–Li) solved in toluene to form the trihalides Tsi–SnHal3. But when the reaction is carried out in a 1 : 2 molar ratio at 60 °C in toluene, Tsi–H, Tsi–Hal and benzyl-trisyl tin-dihalides are formed in good yields, respectively. The nmr (1H, 13C, 29Si, 119Sn) and the Raman spectra are discussed, the X-ray structure analyses of the dibromide as well as the diiodide have been measured.  相似文献   

6.
Pale yellow single crystals of [O=C(NPPh3)C(I)=C(NPPh3)‐C(NPPh3)2]+I·1.5 thf ( 1 ·1.5 thf) have been obtained by the reaction of INPPh3 with thallium in thf suspension. They are characterized by IR spectroscopy and by a crystal structure determination. 1 ·1.5 thf crystallizes in the monoclinic space group P21/n, Z = 4, lattice dimensions at ‐83?C: a = 1101.7(1), b = 3449.0(2), c = 2000.4(1) pm, β = 104.88(1)?, R1 = 0.0382. 1 can be understood as a cationic variation of (Z)‐2‐butenale in which all H atoms are substituted by triphenylphosphoraneimine residues and by a iodine atom, respectively.  相似文献   

7.
The Variable Reaction Behaviour of Base‐free Tris(trimethylsilyl)methyl Lithium with Trihalogenides of Earth‐Metals and Iron Base‐free tris(trimethylsilyl)methyl Lithium, Tsi–Li, reacts with the earth‐metal trihalogenides (MHal3 with M = Al, Ga, In and Hal = Cl, Br, I) primarily to give the metallates [Tsi–MHal3]Li. Simultaneous to this simple metathesis a methylation also takes place, mainly with heavier halogenides of Ga and In with excess Tsi–Li, forming the mono and dimethyl compounds Tsi–M(Me)Hal (M = Ga, In; Hal = I), Tsi–MMe2 (M = Ga), and the bis(trisyl)derivative (Tsi)2InMe, respectively and the main by‐product 1,3‐disilacyclobutane. Representatives of each type of compound have been isolated by fractionating crystallizations or sublimations and characterized by spectroscopic methods (1H, 13C, 29Si NMR, IR, Raman) and X‐ray elucidations. Reduction takes place, when FeCl3 reacts with Tsi–Li (1 : 3 ratio) in toluene at 55–60 °C, yielding red‐violet Fe(Tsi)2, 1,1,1‐tris(trimethylsilyl)‐2‐phenyl ethane and low amounts of Tsi–Cl. Fe(Tsi)2 is monomeric, crystallizes in the monoclinic space group C2/c and consists of a linear C–Fe–C skeleton with d(Fe–C) of 204,5(4) pm.  相似文献   

8.
Formation and Structure of [{(CH3)3Si}3C(nC3H7)In(μ‐OH)]3 The title compound has been prepared in low yield by the reaction of [(THF)2LiC(SiMe3)3]2with humid di(n‐propyl) indium bromide and purified by sublimation at 110–115 °C/10–3 hPa. This organo indium hydroxo compound forms a trimer via In–OH–In bridges and crystallizes in the triclinic space group P 1 with two trimers and one toluene molecule per unitcell. The In3O3 heterocycle has chair‐, the n‐propyl ligand has trans‐conformation, respectively.  相似文献   

9.
Heterobimetallic Complexes of Lithium, Aluminum, and Gold with the N ‐[2‐ N ′, N ′‐(dimethylaminoethyl)‐ N ‐methyl‐aminoethyl]‐ferrocenyl Ligand (η5‐C5H5)Fe{η5‐C5H3[CH(CH3)N(CH3)CH2CH2NMe2]‐2} N‐[2‐N′,N′‐(dimethylaminoethyl)‐N‐methyl‐aminoethyl]ferrocene FcN,NH ( 1 ) reacts with nBuLi under formation of the lithium organyl (FcN,N)Li ( 2 ). At reactions of 2 with AlBr3 and AuCl · PPh3 the heterobimetallic organo derivatives (FcN,N)AlBr2 ( 3 ), (FcN,N)Au · PPh3 ( 4 ) are formed. A detailed characterization of 2 – 4 was carried out by single crystal x‐ray analyses as well as by NMR and Mößbauer spectroscopy.  相似文献   

10.
The title complex, obtained by treating ortho‐benzenedisulfonimide (HZ) with LiOH in aqueous solution, has been characterized by low‐temperature X‐ray diffraction (triclinic, space group P&1macr;, Z' = 1). The lithium cation is bonded to one sulfonyl oxygen atom and three water molecules in a distorted tetrahedral configuration [Li‐O 189.3(3)‐201.2(3) pm, O‐Li‐O 98.5(2)‐123.2(2)?]. The zero‐dimensional [Li(Z)(H2O)3] complexes, which display an intramolecular O(W)‐H···O hydrogen bond, are cross‐linked via five O(W)‐H···O/N/O(W) interactions and a remarkably short C‐H···O bond (H···O 217 pm, C‐H···O 170?) to form a two‐dimensional assembly comprising an internal polar lamella of metal cations, (SO2)2N groups and water molecules, and hydrophobic peripheral regions consisting of protruding benzo groups. In the packing, alternate carbocycles drawn from adjacent layers set up a π‐stacking array of parallel aromatic rings (intercentroid distances 349 and 369 pm, cycle spacings 331 and 336 pm). In a short survey, the currently known crystal packings of seven MIZ · n H2O (n ≥ 0) complexes are examined and compared.  相似文献   

11.
Preparation, Crystal Structure, Thermal Decomposition, and Vibrational Spectra of [Co(NH3)6]2[Be4O(CO3)6] · 10 H2O [Co(NH3)6]2[Be4O(CO3)6] · 10 H2O is a suitable compound for the quantitative determination of beryllium. It can be obtained by reaction of aqueous solutions of carbonatoberyllate with [Co(NH3)6]Cl3. The crystal structure (trigonal‐rhombohedral, R3c (Nr. 161), a = 1071,6(1) pm, c = 5549,4(9) pm, VEZ = 5519(1) · 106 pm3, Z = 6, R1(I ≥ 2σ(I)) = 0,037, wR2(I ≥ 2σ(I)) = 0,094) contains [Co(NH3)6]3+‐ and [Be4O(CO3)6]6–‐ions, which are directly hydrogen bonded as well as with water molecules. The complex cations and anions occupy the positions of a distorted anti‐CaF2‐type. The thermal decomposition, IR and Raman spectra are presented and discussed.  相似文献   

12.
The Reactions of M[BF4] (M = Li, K) and (C2H5)2O·BF3 with (CH3)3SiCN. Formation of M[BFx(CN)4—x] (M = Li, K; x = 1, 2) and (CH3)3SiNCBFx(CN)3—x, (x = 0, 1) The reaction of M[BF4] (M = Li, K) with (CH3)3SiCN leads selectively, depending on the reaction time and temperature, to the mixed cyanofluoroborates M[BFx(CN)4—x] (x = 1, 2; M = Li, K). By using (C2H5)2O·BF3 the synthesis yields the compounds (CH3)3SiNCBFx(CN)3—x x = 0, 1. The products are characterized by vibrational and NMR‐spectroscopy, as well as by X‐ray diffraction of single‐crystals: Li[BF2(CN)2]·2Me3SiCN Cmc21, a = 24.0851(5), b = 12.8829(3), c = 18.9139(5) Å V = 5868.7(2) Å3, Z = 12, R1 = 4.7%; K[BF2(CN)2] P41212, a = 13.1596(3), c = 38.4183(8) Å, V = 6653.1(3) Å3, Z = 48, R1 = 2.5%; K[BF(CN)3] P1¯, a = 6.519(1), b = 7.319(1), c = 7.633(2) Å, α = 68.02(3), β = 74.70(3), γ = 89.09(3)°, V = 324.3(1) Å3, Z = 2, R1 = 3.6%; Me3SiNCBF(CN)2 Pbca, a = 9.1838(6), b = 13.3094(8), c = 16.840(1) Å, V = 2058.4(2) Å3, Z = 8, R1 = 4.4%  相似文献   

13.
Crystal Structures of the Hexachlorometalates NH4[SbCl6], NH4[WCl6], [K(18‐crown‐6)(CH2Cl2)]2[WCl6]·6CH2Cl2 and (PPh4)2[WCl6]·4CH3CN The crystal structures of the title compounds were determined by single crystal X‐ray methods. NH4[SbCl6] and NH4[WCl6] crystallize isotypically in the space group C2/c with four formula units per unit cell. The NH4+ ions occupy a twofold crystallographic axis, whereas the metal atoms of the [MCl6] ions occupy a centre of inversion. There exist weak interionic hydrogen bridges. [K(18‐crown‐6)(CH2Cl2)]2[WCl6]·6CH2Cl2 crystallizes in the orthorhombic space group R3¯/m with Z = 3. The compound forms centrosymmetric ion triples, in which the potassium ions are coordinated with a WCl3 face each. In trans‐position to it the chlorine atom of a CH2Cl2 molecule is coordinated so that, together with the oxygen atoms of the crown ether, coordination number 10 is achieved. (PPh4)2[WCl6]·4CH3CN crystallizes in the monoclinic space group P21/c with Z = 4. This compound, too, forms centrosymmetric ion triples, in which in addition the acetonitrile molecules are connected with the [WCl6]2— ion via weak C—H···Cl contacts.  相似文献   

14.
Novel silylation reactions at [Ge9] Zintl clusters starting from the chlorosilanes SiR3Cl (R = iBu, iPr, Et) and the Zintl phase K4Ge9 are reported. The formation of the tris‐silylated anions [Ge9(SiR3)3] [R = iBu ( 1a ), iPr ( 1b ), Et ( 1c )] by heterogeneous reactions in acetonitrile was monitored by ESI‐MS measurements. For R = iBu 1H, 13C and 29Si NMR experiments confirmed the exclusive formation of 1a . Subsequent reactions of 1a with CuNHCDippCl and Au(PPh3)Cl result in formation of the neutral metal complex (CuNHCDipp)[Ge9{Si(iBu)3}3]·0.5 tol ( 2 ·0.5 tol) and the metal bridged dimeric unit {Au[Ge9{Si(iBu)3}3]2} ( 3a ), isolated as a (K‐18c6)+ salt in (K‐18c6)Au[Ge9{Si(iBu)3}3]2·tol ( 3 ·tol), respectively. Finally, from a toluene/hexane solution of 1a in presence of 18‐crown‐6, crystals of the compound (K‐18c6)2[Ge9{Si(iBu)3}2]·tol ( 4 ·tol), containing the bis‐silylated cluster anion [Ge9(Si(iBu)3)2]2– ( 4a ), were obtained. The compounds 2 ·0.5 tol, 3 ·tol and 4 ·tol were characterized by single‐crystal structure determination.  相似文献   

15.
Two new salts of the cation [CuI(dmp)2]+ (dmp is 2,9‐dimeth­yl‐1,10‐phenanthroline, C14H12N2), namely bis­[bis­(2,9‐dimeth­yl‐1,10‐phenanthroline‐κ2N,N′)copper(I)] bis­(hexa­fluorophos­phate) hemi[bis­(4‐pyridylmethyl­idene)hydrazine] acetonitrile solvate, [Cu(C14H12N2)2]2(PF6)2·0.5C12H10N4·C2H3N or [Cu(dmp)2]2(PF6)2·0.5(bpmh)·CH3CN [bpmh is bis­(4‐pyridylmethyl­idene)hydrazine, C12H10N4], (I), and bis­(2,9‐dimeth­yl‐1,10‐phenanthroline‐κ2N,N′)copper(I) dicyanamide, [Cu(C14H12N2)2](C2N3) or [Cu(dmp)2][N(CN)2], (II), are reported. The Cu—N bond lengths and the distortion from idealized tetra­hedral geometry of the dmp ligands are discussed and compared with related compounds. The bpmh molecule in (I) is π–π stacked with a dmp ligand at a distance of 3.4 Å, rather than coordinated to the metal atom. The molecule lies across an inversion center in the crystal. In (II), the normally coordinated dicyanamide mol­ecule is present as an uncoordinated counter‐ion.  相似文献   

16.
The abstraction of the halogenide ligands in [Re(CH3CN)2Cl4]? should result in a solvent‐only stabilized ReIII complex. The reactions of salts of [Re(CH3CN)2Cl4]? with silver(I) and thallium(I) salts were investigated and the solid‐state structures of cis‐[Re(CH3CN)2Cl4]·CH3CN and cis‐[Re(NHC(OCH3)CH3)2Cl4] are described.  相似文献   

17.
Some new N‐4‐Fluorobenzoyl phosphoric triamides with formula 4‐F‐C6H4C(O)N(H)P(O)X2, X = NH‐C(CH3)3 ( 1 ), NH‐CH2‐CH=CH2 ( 2 ), NH‐CH2C6H5 ( 3 ), N(CH3)(C6H5) ( 4 ), NH‐CH(CH3)(C6H5) ( 5 ) were synthesized and characterized by 1H, 13C, 31P NMR, IR and Mass spectroscopy and elemental analysis. The structures of compounds 1 , 3 and 4 were investigated by X‐ray crystallography. The P=O and C=O bonds in these compounds are anti. Compounds 1 and 3 form one dimensional polymeric chain produced by intra‐ and intermolecular ‐P=O···H‐N‐ hydrogen bonds. Compound 4 forms only a centrosymmetric dimer in the crystalline lattice via two equal ‐P=O···H‐N‐ hydrogen bonds. 1H and 13C NMR spectra show two series of signals for the two amine groups in compound 1 . This is also observed for the two α‐methylbenzylamine groups in 5 due to the presence of chiral carbon atom in molecule. 13C NMR spectrum of compound 4 shows that 2J(P,Caliphatic) coupling constant for CH2 group is greater than for CH3 in agreement with our previous study. Mass spectra of compounds 1 ‐ 3 (containing 4‐F‐C6H4C(O)N(H)P(O) moiety) indicate the fragments of amidophosphoric acid and 4‐F‐C6H4CN+ that formed in a pseudo McLafferty rearrangement pathway. Also, the fragments of aliphatic amines have high intensity in mass spectra.  相似文献   

18.
The complexes [M(PNHP)I]I (PNHP = bis[2‐(diphenylphosphino)ethyl]amine; M = Pd ( 1 ), Pt ( 2 )) and [M(NP3)I]I (NP3 = tris[2‐(diphenylphosphino)ethyl]amine; M = Pd ( 3 ), Pt ( 4 )) were prepared by interaction of the appropriate aminophosphine in CH2Cl2 with aqueous solutions containing [MCl4]2— salts and NaI in a ratio 1:4. Complexes 2 and 3 form the polynuclear compounds [Pt2(PNHP)3]I4 ( 2a ) and [Pd3(NP3)2I4]I2 ( 3a ) in the presence of coordinating solvents such as the mixture CD3OD/D2O/DMSO‐d6 and CH2Cl2/CH3OH, respectively. Complex 1 consists of distorted square‐planar cations [Pd(PNHP)I]+ and iodide anions able to establish short N‐H···I interactions of 2.850Å. The aminophosphine adopts a boat conformation and is coordinated to palladium in a tridentate chelating fashion. The crystal structure for cations of 3a reveals the presence of two types of distorted square‐planar PdII atoms, PdNP2I and trans‐PdP2I2, NP3 acting as tridentate chelating and bridging ligand, respectively. On the basis of 31P {1H} NMR data it has been shown that each distorted square‐planar Pt(II) centre of 2a contains one PNHP acting as tridentate chelating ligand with the other aminophosphine bridging the two metals via the P atoms. Complexes 3 and 4 were shown by 31P {1H} NMR to have the metal atom bound to the three P atoms of NP3 and one iodo ligand. Additions of AcCysSH and GSH to 4 result, by a ring‐opening process, in the formation of [Pt(NP2PO)(SR)] (RS = Acys ( 4a ), GS ( 4b )) in which the ligand contains a dangling arm phosphine oxide group and the platinum atom achieves the four‐coordination involving the N atom of the aminophosphine. Compounds [Pt2(PNHP)3]Cl4 ( 2a′ , 2a″ ), [PtAu(PNHP)2I]I2 ( 2b ), and [Pt(PNHP)(ONO2)](NO3) ( 2c ) were detected in some extent in solution by reaction of complex 2 with Au(tdg)Cl (tdg = thiodiglycol), AuI and excess AgNO3, respectively. While 1 does not react with AuI, complex 3 affords the heterobimetallic complexes PdCu(NP3)I3 ( 5 ), PdAg2(NP3)I4 ( 6 ) and PdAu(NP3)I3 ( 7 ) by interaction with the appropriate iodide M′I (M′ = Cu, Ag, Au) via a chelate ring‐opening.  相似文献   

19.
The asymmetric unit of the title compound, [InNa(C3H5O3)4]n, consists of one InIII ion, one NaI ion and four crystallographically independent l ‐lactate monoanions. The coordination of the InIII ion is composed of five carboxylate O and two hydroxy O atoms in a distorted pentagonal–bipyramidal coordination geometry. The NaI ion is six‐coordinated by four carboxylate O atoms and two hydroxy O atoms from four l ‐lactate ligands in a distorted octahedral geometry. Each InIII ion is coordinated by four surrounding l ‐lactate ligands to form an [In(l ‐lactate)4] unit, which is further linked by NaI ions through Na—O bonds to give a two‐dimensional layered structure. Hydrogen bonds between the hydroxy groups and carboxylate O atoms are observed between neighbouring layers.  相似文献   

20.
Synthesis and Crystal Structure of Ammonium Tetraamminelithium Amidotrithiophosphate‐Ammonia(1/1)(NH4)[Li(NH3)4][P(NH2)S3]·NH3 Colourless crystals of (NH4)[Li(NH3)4][P(NH2)S3]·NH3 were prepared by the reduction of P4S10 with a solution of lithium in liquid ammonia. The X‐ray structure determination shows them to contain the pseudo‐tetrahedral amidotrithiophosphate anion [P(NH2)S3]2− (point group CS), which is the hitherto unknown final member of a series of previously characterized amidothiophosphates. The ammonium ion and the ammonia molecule of solvation form an diamminehydrogen(1+)‐ion N2H7+ with a short, nearly linear hydrogen bond of 2.864(3) Å.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号