首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study 3D collagen materials with magnetic properties were prepared by lyophilization technique. Magnetic particles were synthesized by precipitation of iron (II) sulfate heptahydrate and iron (III) chloride hexahydrate in an aqueous solution of chitosan and then added to a collagen solution. Starch dialdehyde (DAS) was used as a cross-linking agent for the materials. The properties of the obtained materials were studied using infrared spectroscopy, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Additionally, mechanical properties, porosity, density, swelling and moisture content were measured.It was found that 3D composites made from collagen with magnetic particles are hydrophilic with a high swelling ability. Cross-linking of such collagen materials with dialdehyde starch (DAS) alters the swelling degree, porosity and density of materials. The addition of magnetic particles to collagen materials decreases its porosity, and increases the density of the studied materials. Collagen 3D materials with magnetic particles are rigid and inflexible. Magnetic properties of the 3D collagen materials containing magnetic particles were confirmed by the interaction of this material with a magnet.  相似文献   

2.
有机磁性材料是最近二十多年发展起来的新型的功能材料 ,因为其结构的多样性 ,可用化学方法合成 ,可得到磁性能与机械、光、电等方面结合的综合性能等特点 ,在超高频装置、高密度存贮材料、吸波材料、微电子工业和宇航等需要轻质磁性材料的领域有很大的应用前景。本文综述了有机磁性化合物的发展和研究近况。  相似文献   

3.
The new generation of magnetic elastomers represents a new type of composites, consisting of small (mainly nano and micron‐sized) magnetic particles dispersed in a highly elastic polymeric matrix. The combination of polymers with magnetic materials displays novel and often enhanced properties. Highly elastic magnetic composites are quite new and understanding of the behavior of these materials depending on the composition, external conditions, and the synthesis processes is still missing. Thus, the aim of this work is the study of fundamental principles governing the preparation of these materials as well as their structure and elastic properties. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

4.
The diverse magnetic properties of lanthanide-based magnetic molecular materials are introduced in the following organization. First, the general aspects of magnetic molecular materials and electronic states of lanthanide ions are introduced. Then the structures and magnetic properties are described and analyzed for molecules with one lanthanide ion, 4f-4f, 4f-3d and 4f-p magnetic coupling interactions. In each section, magnetic coupling, magnetic ordering and magnetic relaxation phenomenon are briefly reviewed using some examples. Finally, some possibilities of developing magnetic molecular materials containing lanthanide ions are discussed in the outlook part.  相似文献   

5.
The mechanical properties of new magnetic composite materials were studied. The above materials represent rubbery silicon matrices filled with magnetic microparticles of metallic iron or magnetite. In homogeneous magnetic fields with an intensity of up to 0.4 T, the shear modulus of the composites was abnormally high (up to 10 000%). The variation of elastic properties of new materials on the type and volume content of the magnetic filler was investigated. In the presence of a sufficiently strong magnetic field, the above composites were shown to behave as elastoplastic materials with strengthening.  相似文献   

6.
The literature has shown numerous contributions on the synthesis and physicochemical properties of persistent organic radicals but there are a lesser number of reports about their use as building blocks for obtaining molecular magnetic materials exhibiting an additional and useful physical property or function. These materials show promise for applications in spintronics as well as bistable memory devices and sensing materials. This critical review provides an up-to-date survey to this new generation of multifunctional magnetic materials. For this, a detailed revision of the most common families of persistent organic radicals-nitroxide, triphenylmethyl, verdazyl, phenalenyl, and dithiadiazolyl-so far reported will be presented, classified into three different sections: materials with magnetic, conducting and optical properties. An additional section reporting switchable materials based on these radicals is presented (257 references).  相似文献   

7.
纳米晶体材料研究进展   总被引:25,自引:0,他引:25  
综述了目前纳米晶体材料合成、结构、性质和应用的研究和发展现状。通过惰性气体凝结、机械合金、等离子体技术和其他许多方法可以制得纳米晶体材料。尽管早期的研究者认为纳米晶体材料的晶粒边界结构不同于常规材料, 但目前有关纳米晶体材料结构的研究表明其具有与常规晶体材料相同的晶粒边界结构。纳米晶体材料所具有的诸如扩散和烧结、力学、陶瓷和金属间化合物的延展性、电学、热膨胀、光学、磁学、催化和腐蚀行为等性质优于常规多晶材料, 这些性质具有巨大的潜在应用价值。  相似文献   

8.
新型沸石分子筛主体-纳米客体复合材料研究进展   总被引:11,自引:0,他引:11  
This paper mainly elaborated the recent developments of the studies on the new type zeolite molecular sieve host-nanoguest composite materials composing of molecular sieve channels or cages encapsulated nanoscale materials from the point of nanochemistry and material science, and the trends of development in this field. As the research of the properties of this kind of materials are going on, it is possible that this kind of host-guest nanocomposite materials will be usd in some fields. such as science and high technology fields. as the new type of optical, electrical and magnetic materials in the level of molecular assembly. This paper contains the following contents: hosts and guests; the sizes and shapes of guests; the optical, electrical and magnetic properties of the materials; the syntheses and characterizations of the materials; the applications of the materials and forecast.  相似文献   

9.
以自制的Fe3O4磁性纳米材料为核,多巴胺(DA)为表面修饰剂,成功地将2.0 G聚酰胺-胺(PAMAM)树状大分子接枝在Fe3O4磁核表面,制备出了一系列不同DA含量的Fe3O4@PDA@PAMAM磁性纳米吸附材料。采用X射线衍射仪(XRD)、红外光谱仪(IR)、振动样品磁强计(VSM)、透射电子显微镜(TEM)和电感耦合等离子体发射光谱仪(ICP-OES)等分析测试手段对材料组成、微观结构、磁性能和对重金属Cd(Ⅱ)离子的吸附性能进行了测试和表征。研究了修饰剂DA用量对Fe3O4@PDA@PAMAM磁性纳米吸附材料的相组成、微观结构、磁性能和吸附性能的影响。实验结果表明,Fe3O4@PDA@PAMAM磁性纳米吸附材料均呈典型的核-壳结构,材料晶型均呈现尖晶石结构,且壳层厚度随DA用量增加而增厚;材料的饱和磁化强度(Ms)均比Fe3O4的小,且随着DA用量的增加而降低,并且材料的矫顽力(Hc)和剩余磁化强度(Mr)均较低,其磁响应特性适合于做为可回收磁性纳米吸附材料。材料对Cd(Ⅱ)离子的平衡吸附容量随着DA用量的增加呈先增加后减小趋势。当Fe3O4和DA的质量比为8∶4时,吸附剂对Cd(Ⅱ)离子的吸附容量达到最大值165.13 mg·g^-1。  相似文献   

10.
杨桦 《化学教育》2020,41(2):34-38
推荐一个大学化学综合实验: Fe/Fe3O4磁性材料的合成、结构性质与磁性能的测定,该实验涉及材料的合成、结构表征和磁性能的测定。通过该实验可以使学生掌握一些大型仪器的基本原理和基本操作,掌握材料合成的方法、材料结构及形貌的表征手段以及磁滞曲线的测定方法。使学生在掌握材料研究的基础理论和基本实验技能的同时,培养学生独力实验能力和创新意识,尤其是培养他们综合运用知识的能力。进一步缩短教学与科研的距离。  相似文献   

11.
Superparamagnetic particles have been attractive for molecular diagnostics and analytical chemistry applications due to their unique magnetic properties and their ability to interact with various biomolecules of interest. This paper presents a critical overview of magnetic nano ‐ and microparticles used as a solid phase for extraction and purification of DNAs. The mechanisms of DNA binding to the surface of functionalised magnetic particles are described. The most widely used materials including silica supports, organic polymers and other materials, mostly containing magnetite or paramagnetic metallic elements are reviewed. The main application areas of magnetic particles for DNA separation are briefly described.  相似文献   

12.
Carbon-based magnetic semiconductors are easy to be modified with low cost and low power consumption.While they can demonstrate robust long-range magnetic ordering and show great potential for application after introducing magnetic moments.Graphdiyne(GDY),as an allotrope of carbon,exhibits intrinsic semiconductor properties and paramagnetic properties due to its unique structure and the presence of sp carbon.To improve the magnetic properties of GDY and prepare excellent magnetic semiconductor materials,scientists have done a lot of related research work.The most direct and effective method to introduce magnetism is heteroatom doping.In this review,we have entirely described the latest GDY magnetism introduction methods,effects,and theoretical calculations,etc.Doping methods include post-doping and molecular design doping.The doping elements have covered non-metallic elements(N,H,F,Cl,S),metallic elements(Fe),and functional groups.The magnetic properties of the modified GDY materials were studied by experimental analysis and theoretical calculations.This review provides a sufficient basis and direction for related researches.  相似文献   

13.
The paper is devoted to the utilization of ferrofluid as a separating medium and modifying agent affecting the magnetic properties of solid and liquid materials. The separation tests in a MHS separator have been carried out under laboratory condition. The selectivity of ferrofluid's adsorption to the surface of some materials can be used for enhancing the magnetic susceptibility and influencing the efficiency of separation process. The enhancement of magnetic susceptibility of oil products up to a level sufficient for their magnetic extraction from water is possible by admixing of a definite amount of kerosene-based ferrofluid, which is non-miscible with water. The results point to the fact that the MHS method is suitable for the separation of non-magnetic materials according to their density and the modification of magnetic properties of materials by ferrofluid enhancing their magnetic separability.  相似文献   

14.
The field of molecular based magnetism is an active area of research directed toward the design of new magnetic materials. The idea is to introduce molecular strategies in magneto-chemistry. This can open completely new synthetic routes to materials with previously unknown physical properties. Spin carriers used within this approach range from purely organic radicals to metal complexes and organometallic compounds. The design of new magnetic materials with tailor-made properties requires a detailed knowledge about the interactions between possible spin carriers and the strategies necessary to achieve interactions in all three dimensions. The latter is closely related to the field of crystal engineering. Starting from introductory remarks to magnetochemistry the underlaying concepts for the design of magnetic materials on the basis of molecular compounds as well as new developments and possible applications are described.  相似文献   

15.
Nanosized molecular magnetic materials such as single-molecule magnets and single-chain magnets are recent attractive research targets in the fields of materials chemistry and physics, not only because of their fundamental fascination, but also because of their potential applications as ultimate memory devices or in quantum computations. In this paper, we give our personal perspectives on these materials. In particular "magnetic assemblies of single-molecule magnets", in which inter-molecular interaction is an essential factor in determining their properties, will be focused on together with related compounds reported recently.  相似文献   

16.
The development of synthesis methods to access advanced materials, such as magnetic materials that combine multimetallic phosphide phases, remains a worthy research challenge. The most widely used strategies for the synthesis of magnetic transition metal phosphides (TMPs) are organometallic approaches. In this study, Fe-containing homometallic dendrimers and Fe/Co-containing heterometallic dendrimers were used to synthesize magnetic materials containing multimetallic phosphide phases. The crystalline nature of the nearly aggregated particles was indicated for both designed magnetic samples. In contrast to heterometallic samples, homometallic samples showed dendritic effects on their magnetic properties. Specifically, saturation magnetization (Ms) and coercivity (Hc) decrease as dendritic generation increases. Incorporating cobalt into the homometallic dendrimers to prepare the heterometallic dendrimers markedly increases the magnetic properties of the magnetic materials from 60 to 75 emu/g. Ferromagnetism in homometallic and heterometallic particles shows different responses to temperature changes. For example, heterometallic samples were less sensitive to temperature changes due to the presence of Co2P in contrast to the homometallic ones, which show an abrupt change in their slopes at a temperature close to 209 K, which appears to be related to the Fe2P ratios. This study presents dendrimers as a new type of precursor for the assembly of magnetic materials containing a mixture of iron- and cobalt-phosphides phases with tunable magnetism, and provides an opportunity to understand magnetism in such materials.  相似文献   

17.
Work in mesoporous silica-based materials began in the early 1990s with work by Mobil. These materials had pore sizes from 20-500 A and surface areas of up to 1500 m(2) g(-1) and were synthesized by a novel liquid crystal templating approach. Researchers subsequently extended this strategy to the synthesis of mesoporous transition metal oxides, a class of materials useful in catalysis, electronic, and magnetic applications because of variable oxidation states, and populated d-bands-features not found in silicates. These materials are already showing promise in electronic and optical applications hinging on the semiconducting properties of transition metal oxides and their potential to act as electron acceptors, an important feature in the design of cathodic materials. This is the first general review of non-silicate mesoporous materials and will focus on recent advances in this area, emphasizing materials possessing unique electronic, magnetic, or optical properties. Also covered are advances in the synthesis and applications of mesostructured sulfides as well as a new class of template-synthesized platinum-based materials that show promise in heterogeneous catalysis.  相似文献   

18.
The development in theoretical condensed-matter science based on density-functional theory (DFT) has reached a level where it is possible, from “parameter-free” quantum mechanical calculations to obtain total energies, forces, vibrational frequencies, magnetic moments, mechanical and optical properties and so forth. The calculation of such properties are important in the analyses of experimental data and they can be predicted with a precision that is sufficient for comparison with experiments. It is almost impossible to do justice to all developments achieved by DFT because of its rapid growth. Hence, it has here been focused on a few advances, primarily from our laboratory. Unusual bonding behaviors in complex materials are conveniently explored using the combination of charge density, charge transfer, and electron-localization function along with crystal-orbital Hamilton-population analyses. It is indicated that the elastic properties of materials can reliably be predicted from DFT calculations if one takes into account the structural relaxations along with gradient corrections in the calculations. Experimental techniques have their limitations in studies of the structural stability and pressure-induced structural transitions in hydride materials whereas the present theoretical approach can be applied to reliably predict properties under extreme pressures. From the spin-polarized, relativistic full-potential calculations one can study novel materials such as ruthenates, quasi-one-dimensional oxides, and spin-, charge-, and orbital-ordering in magnetic perovskite-like oxides. The importance of orbital-polarization correction to the DFT to predict the magnetic anisotropy in transition-metal compounds and magnetic moments in lanthanides and actinides are emphasized. Apart from the full-potential treatment, proper magnetic ordering as well as structural distortions have to be taken into account to predict correctly the insulating behavior of transition-metal oxides. The computational variants LDA and GGA fail to predict insulating behavior of Mott insulators whereas electronic structures can be described correctly when correlation effects are taken into account through LDA+U or similar approaches to explain their electronic structures correctly. Excited-state properties such as linear optical properties, magneto-optical properties, XANES, XPS, UPS, BIS, and Raman spectra can be obtained from accurate DFT calculations.  相似文献   

19.
20.
The combination of polymers with nanomaterials displays novel and often enhanced properties compared to the traditional materials. They can open up possibilities for new technological applications. The magnetic polymer gel represents a new type of composites consisting of small magnetic particles, usually from the nanometer range to the micron range, dispersed in a highly elastic polymeric gel matrix. Combination of magnetic and elastic properties leads to a number of striking phenomena that are exhibited in response to impressed magnetic fields. Giant deformational effects, high elasticity, anisotropic properties, temporary reinforcement and quick response to magnetic field open new opportunities for using such materials for various applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号