首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Structure and 1D‐magnetic properties of (pipzH2)[MnF4(H2PO4)] From hydrofluoric and phosphoric acid solution of Manganese(III), using piperazinium(2+) counter cations (pipzH22+) the chain‐anion [MnF4(H2PO4)]2— can be stabilized providing an interesting model system for studying the magnetic exchange interaction via phosphate bridges. Depending on the HF/H3PO4 excess (pipzH2)[MnF4(H2PO4)] crystallizes in two polymorphs I und II , differing mainly in the orientation of the cations. Form I is monoclinic, space group P21/c, Z = 4, a = 6.749(1), b = 12.039(1), c = 12.501(1) Å, β = 94.420(4)°, R = 0.023, Form II crystallizes in the same space group type P21/c, Z = 4, a = 6.651(1), b = 12.799(1), c = 12.825(1) Å, β = 110.312(5)°, R = 0.037. The Mn3+ ions are octahedrally surrounded by four terminal fluoride ligands and axially by bidentate bridging dihydrogenphosphate groups. The shape of the chain anions is very close in both modifications and characteristic for ferrodistortive Jahn‐Teller ordering.The Mn—O‐bonds along the chain direction are strongly elongated (distances 2.16 to 2.21 Å) whereas all Mn—F bond (1.81—1.88Å) are ruther short. On a large single crystal of form I 1D‐antiferromagnetic properties were found. By fitting an appropriate model based on the temperature dependence of the correlation lengths using an anisotropy constant D/k = —2.9 K a remarkably high exchange energy of J/k = —1.6(1) K along the chains could be determined.  相似文献   

2.
Jahn‐Teller Ordering in Manganese(III) Fluoride Sulphates. I. Crystal Structures of A2[MnF3(SO4)] (A = Rb, NH4, Cs) The three isostructural fluorosulphatomanganates(III) A2[MnF3(SO4)] (A = Rb, NH4, Cs) crystallize in space group P21/c, Z = 4. Rb2[MnF3(SO4)]: a = 7.271, b = 11.091, c = 8.776Å, β = 92.26°, R = 0.033; (NH4)2[MnF3(SO4)]: a = 7.299, b = 10.157, c = 8.813Å, β = 91.51°, R = 0.025; Cs2[MnF3(SO4)]: a = 7.365, b = 11.611, c = 9.211, β = 92.30°, R = 0.029. In the chain anions [MnF3(SO4)]2— manganese(III) is coordinated by two trans‐terminal and two trans‐bridging fluorine ligands, and by the O‐atoms of two briding sulphate ligands in trans position. The Jahn‐Teller effect induces a variety of antiferrodistortive ordering resulting in distorted [MnF4O2] octahedra with alternating elongation of F—Mn—F — and O—Mn—O — axes, respectively. Thus, only asymmetrical bridges are formed.  相似文献   

3.
By adding piperazine to a hydrofluoric and phosphoric acid solution of Manganese(III) fluoride, the fluoride phosphate (pipzH2)[MnF2(HPO4)(H2O)](H2PO4) can be crystallized. Its structure is built by piperazinium(2+) cations, (H2PO4)? anions, and an anionic double‐chain of [HPO4] tetrahedra and [MnO3F2(H2O)] octahedra. The structure is triclinic, space group P , Z = 2, a = 622.97(4), b = 923.46(6), c = 1183.62(7) pm, α = 98.343(6)°, β = 100.747(7)°, γ = 107.642(5)°, R = 0.0289. It is worth noting that a ferrodistortive Jahn‐Teller order is observed with [MnO3F2(H2O)] octahedra strongly elongated along the F–Mn–OH2 axes perpendicular to the chain plane. The structure is stabilized by very strong hydrogen bonds.  相似文献   

4.
Synthesis and Crystal Structure of K2(HSO4)(H2PO4), K4(HSO4)3(H2PO4), and Na(HSO4)(H3PO4) Mixed hydrogen sulfate phosphates K2(HSO4)(H2PO4), K4(HSO4)3(H2PO4) and Na(HSO4)(H3PO4) were synthesized and characterized by X‐ray single crystal analysis. In case of K2(HSO4)(H2PO4) neutron powder diffraction was used additionally. For this compound an unknown supercell was found. According to X‐ray crystal structure analysis, the compounds have the following crystal data: K2(HSO4)(H2PO4) (T = 298 K), monoclinic, space group P 21/c, a = 11.150(4) Å, b = 7.371(2) Å, c = 9.436(3) Å, β = 92.29(3)°, V = 774.9(4) Å3, Z = 4, R1 = 0.039; K4(HSO4)3(H2PO4) (T = 298 K), triclinic, space group P 1, a = 7.217(8) Å, b = 7.521(9) Å, c = 7.574(8) Å, α = 71.52(1)°, β = 88.28(1)°, γ = 86.20(1)°, V = 389.1(8)Å3, Z = 1, R1 = 0.031; Na(HSO4)(H3PO4) (T = 298 K), monoclinic, space group P 21, a = 5.449(1) Å, b = 6.832(1) Å, c = 8.718(2) Å, β = 95.88(3)°, V = 322.8(1) Å3, Z = 2, R1 = 0,032. The metal atoms are coordinated by 8 or 9 oxygen atoms. The structure of K2(HSO4)(H2PO4) is characterized by hydrogen bonded chains of mixed HnS/PO4 tetrahedra. In the structure of K4(HSO4)3(H2PO4), there are dimers of HnS/PO4 tetrahedra, which are further connected to chains. Additional HSO4 tetrahedra are linked to these chains. In the structure of Na(HSO4)(H3PO4) the HSO4 tetrahedra and H3PO4 molecules form layers by hydrogen bonds.  相似文献   

5.
Pale rose single crystals of SrMn2(PO4)2 were obtained from a mixture of SrCl2 · 6 H2O, Mn(CH3COO)2, and (NH4)2HPO4 after thermal decomposition and finally melting at 1100 °C. The new crystal structure of strontium manganese orthophosphate [P‐1, Z = 4, a = 8.860(6) Å, b = 9.054(6) Å, c = 10.260(7) Å, α = 124.27(5)°, β = 90.23(5)°, γ = 90.26(6)°, 4220 independent reflections, R1 = 0.034, wR2 = 0.046] might be described as hexagonal close‐packing of phosphate groups. The octahedral, tetrahedral and trigonal‐bipyramidal voids within this [PO4] packing provide different positions for 8‐ and 10‐fold [SrOx] and distorted octahedral [MnO6] coordination according to a formulation Mn Mn Mn Sr (PO4)4. Single crystals of β′‐Mn3(PO4)2 (pale rose) were grown by chemical vapour transport (850 °C → 800 °C, P/I mixtures as transport agent). The unit cell of β′‐Mn3(PO4)2 [P21/c, Z = 12, a = 8.948(2) Å, b = 10.050(2) Å, c = 24.084(2) Å, β = 120.50°, 2953 independent reflections, R1 = 0.0314, wR2 = 0.095] contains 9 independent Mn2+. The reinvestigation of the crystal structure led to distinctly better agreement factors and significantly reduced standard deviations for the interatomic distances.  相似文献   

6.
The title complex salt, (C16H36N)[MnBr(C32H16N8)] or (TBA)[MnIIBr(Pc)] (TBA is tetrabutylammonium and Pc is phthalocyaninate), has been obtained as single crystals by the diffusion technique and its crystal structure was determined using X‐ray diffraction. The high‐spin (S = ) [MnIIBr(Pc)] macrocycle has a concave conformation, with an average equatorial Mn—N(Pc) bond length of 2.1187 (19) Å, an axial Mn—Br bond length of 2.5493 (7) Å and with the MnII cation displaced out of the 24‐atom Pc plane by 0.894 (2) Å. The geometry of the MnIIN4 fragment in [MnIIBr(Pc)] is similar to that of the high‐spin (S = ) manganese(II) tetraphenylporphyrin (TPP) in [MnII(1‐MeIm)(TPP)] (1‐MeIm is 1‐methylimidazole).  相似文献   

7.
Jahn‐Teller Ordering in pipzH2[Mn2F8], a Fluoromanganate(III) with a New Layer Structure From a solution of (pipzH2)[MnF2(HPO4)(H2O)]·(H2PO4) in concentrated hydrofluoric acid the title compound could be crystallized and was characterized by X‐ray crystallography: monoclinic, space group P21/n, Z = 8, a = 13.275(1), 10.400(1), c = 14.928(1) Å, β = 112.337(8), R = 0.0265. The structure shows a new type of anionic layers [Mn2F8] built of dimers of edge‐sharing [MnF6] octahedra linked via common vertices, alternating with layers of piperazinium(2+) cations. A dense network of hydrogen bonds N–H···F achieves a strong 3D interconnection. Strong elongation of the [MnF6] octahedra is observed due to the Jahn‐Teller effect.The long axes show parallel (ferrodistortive) orientation within the dimers, but the ordering between the dimers is antiferrodistorive. A possible mechanism of formation is discussed on the basis of precursor structures.  相似文献   

8.
The title compound, {[Mn(C4H4O6)(C12H8N2)]·6H2O}n, has a linear chain structure containing monomeric [Mn(C4H4O6)(C12H8N2)] repeat units. Each manganese ion is six‐coordinate, with the two phenanthroline N atoms [Mn—N = 2.229 (2) and 2.235 (2) Å] and four O atoms from two tartrate anions [Mn—OCOO = 2.1252 (19) and 2.1310 (19) Å, and Mn—OOH = 2.2404 (19) and 2.2424 (19) Å] forming a seriously distorted octahedral coordination environment. Six water mol­ecules exist outside every repeat unit as solvate mol­ecules. Extensive hydrogen‐bonding interactions and π–π stacking of the phenanthroline moieties exist between the chains.  相似文献   

9.
Yellowish single crystals of acidic mercury(I) phosphate (Hg2)2(H2PO4)(PO4) were obtained at 200 °C under hydrothermal conditions in 32% HF from a starting complex of microcrystalline (Hg2)2P2O7. Refinement of single crystal data converged at a conventional residual R[F2 > 2σ(F2)] = 3.8% (C2/c, Z = 8, a = 9.597(2) Å, b = 12.673(2) Å, c = 7.976(1) Å, β = 110.91(1)°, V = 906.2(2) Å3, 1426 independent reflections > 2σ out of 4147 reflections, 66 variables). The crystal structure consists of Hg22+‐dumbbells and discrete phosphate groups H2PO4 and PO43–. The Hg22+ pairs are built of two crystallographically independent Hg atoms with a distance d(Hg1–Hg2) = 2.5240(6) Å. The oxygen coordination sphere around the mercury atoms is asymmetric with three O atoms for Hg1 and four O atoms for Hg2. The oxygen atoms belong to the different PO4 tetrahedra, which in case of H2PO4‐groups are connected by hydrogen bonding. Upon heating over 230 °C, (Hg2)2(H2PO4)(PO4) condenses to (Hg2)2P2O7, which in turn disproportionates at higher temperatures into Hg2P2O7 and elemental mercury.  相似文献   

10.
On Reactions of Hexachlorodiberyllate with Trimethylsilyl‐N‐dimethylamide. Crystal Structures of (Ph4P)3[Be2Cl5(OSiMe3)][BeCl3(Me2NSiMe3)], (Ph4P)[BeCl3(HNMe2)], and (Ph4P)(H2NMe2)[BeCl4] Reactions of bis‐tetraphenylphosphonium hexachlorodiberyllate, (Ph4P)2[Be2Cl6], with trimethylsilyl‐N‐dimethylamide under different conditions lead to the novel chloroberyllate derivatives (Ph4P)3[Be2Cl5(OSiMe3)][BeCl3(Me2NSiMe3)] ( 1 ), (Ph4P)[BeCl3(HNMe2)] ( 2 ), and (Ph4P)(H2NMe2)[BeCl4] ( 3 ). 1 ‐ 3 were characterized by IR spectroscopy and crystal structure determinations. 1· 4CH2Cl2: Space group P1¯, Z = 2, lattice dimensions at 193 K: a = 1115.6(1), b = 2110.7(2), c = 2145.0(3) pm, α = 71.38(1)°, β = 85.66(1)°, γ = 85.24(1)°, R1 = 0.0732. The [Be2Cl5(OSiMe3)]2— ion in the structure of 1 is derived from the [Be2Cl6]2— ion by substitution of a μ‐Cl ligand by the oxygen atom of the (OSiMe3) group. The second anion, [BeCl3(Me2NSiMe3)], can be described as donor acceptor complex with a short Be—N bond of 179(1) pm. 2 : Space group P1¯, Z = 2, lattice dimensions at 193 K: a = 1063.1(1), b = 1072.0(1), c = 1238.3(1) pm, α = 87.55(1)°, β = 74.86(1)°, γ = 69.73(1)°, R1 = 0.0299. The anion of 2 forms a centrosymmetric dimer [BeCl3(HNMe2)]22— via N—H···Cl bridges of the two donor acceptor complex units with Be—N separations of 175.2(2) pm. 3 : Space group Pbca, Z = 8, lattice dimensions at 193 K: a = 926.9(1), b = 2164.7(1), c = 2732.7(1) pm, R1 = 0.0495. The structure of 3 contains centrosymmetric ion quadrupoles [(Me2NH2)(BeCl4)]22— forming by N—H···Cl bridges between (Me2NH2)+ and [BeCl4]2— ions.  相似文献   

11.
New compounds, Sr2Ga(HPO4)(PO4)F2 and Sr2Fe2(HPO4)(PO4)2F2, have been prepared by hydrothermal synthesis (700°C, 180 MPa, 24 h) and characterized by single-crystal X-ray diffraction. Sr2Ga(HPO4)(PO4)F2 crystallizes in the monoclinic space group P21/n with a = 8.257(1) Å, b = 7.205(1) Å, c = 13.596(2) Å, β = 108.02(1)°, V = 769.2(2) Å3 and Z = 4 and Sr2Fe2(HPO4)(PO4)2F2 in the triclinic space group P21/n with a = 8.072(1) Å, b = 8.794(1) Å, c = 8.885(1) Å, α = 102.46(1)°, β = 115.95(1)°, γ = 89.95(1)°, V = 550.6(1) Å3 and Z = 2. Structures are both based on different sheets involving corner-linkage between octahedra and tetrahedra. The sheets are linked by Sr2+ cations. Structural relationships exist between the descloizite mineral and the title compounds.  相似文献   

12.
NH4[PO2F(NH2)] has been prepared by the reaction of a betaine py·PO2F with excess ammonia in acetonitrile solution, while the ammonolysis of DMAP·PO2F with a stoichiometric amount of NH3 yields [DMAPH][PO2F(NH2)]. The crystal structure of the latter was determined by single‐crystal X‐ray diffraction, which revealed that the anions [PO2F(NH2)] are linked to infinite chains by double N—H···O bridges. Additional strong N—H···O bridging bonds connect each anion with its [DMAPH]+ counterion. The formation of a new betaine NH3·PO2F in the solution of py·PO2F in liquid ammonia was proved by 31P NMR spectroscopy and by identification of its hydrolysis products.  相似文献   

13.
In the title compound [systematic name: aqua(1,10‐phenanthroline‐κ2N,N′)(pyridine‐2,6‐di­carboxyl­ato‐κ3O2,N,O6)manganese(II) monohydrate, [Mn(C7H3NO4)(C12H8N2)(H2O)]·H2O, the manganese(II) centre is surrounded by one bidentate phenanthroline ligand [Mn—N = 2.248 (3) and 2.278 (3) Å], one tridentate dipicolinate ligand [Mn—N = 2.179 (3) Å, and Mn—O = 2.237 (2) and 2.266 (2) Å] and one water mol­ecule [Mn—O = 2.117 (3) Å], and it exhibits a strongly distorted octahedral geometry, with trans angles ranging from 144.12 (9) to 158.88 (11)°. Extensive intermolecular hydrogen‐bonding interactions involving coordinated and uncoordinated water mol­ecules and the carboxyl O atoms of the dipicolinate ligand, as well as a stacking interaction involving the phenanthroline rings, are observed in the crystal structure.  相似文献   

14.
A new inorganic–organic hybrid zinc phosphite, [Zn(HPO3)(C6H11NO2)]n, has been synthesized hydrothermally. Protonated piperidin‐1‐ium‐4‐carboxylate (PDCA) was generated in situ by hydrolysis of the piperidine‐4‐carboxamide precursor. The P atom possesses a typical PO3H pseudo‐pyramidal geometry. The crystal structure features an unusual (3,4)‐connected two‐dimensional inorganic zinc–phosphite layer, with organic PDCA ligands appended to the sheets and protruding into the interlayer region. Helical chains of opposite chirality are involved in the construction of a puckered sheet structure.  相似文献   

15.
A Contribution to Rhenium(II)‐, Osmium(II)‐, and Technetium(II)‐Thionitrosyl‐Complexes: Preparation, Structures, and EPR‐Spectra The reaction of [ReVINCl4] and [OsVINCl4] with S2Cl2 leads to the formation of the thionitrosyl complexes [MII(NS)Cl4] (M = Re, Os) which could not be isolated as pure compounds. Addition of pyridine to the reaction mixture results in the formation of the stable compounds trans‐(Ph4P)[OsII(NS)Cl4py], trans‐(Hpy)[OsII(NS)Cl4py], trans‐(Ph4P)[ReII(NS)Cl4py], and cis‐(Ph4P)[ReII(NS)Cl4py]. The crystal structure analyses show for trans‐(Ph4P)[OsII(NS)Cl4py] (monoclinic, P21/n, a = 12.430(3)Å, b = 18.320(4)Å, c = 15.000(3)Å, β = 114.20(3)°, Z = 4), trans‐(Hpy)[OsII(NS)Cl4py] (monoclinic, P21/n, a = 7.689(1)Å, b = 10.202(2)Å, c = 20.485(5)Å, β = 92.878(4)°, Z = 4), trans‐(Ph4P)[ReII(NS)Cl4py] (triclinic, P1¯, a = 9.331(5)Å, b = 12.068(5)Å, c = 15.411(5)Å, α = 105.25(1)°, β = 90.23(1)°, γ = 91.62(1)°, Z = 2), and cis‐(Ph4P)[ReII(NS)Cl4py] (monoclinic, P21/c, a = 10.361(1)Å, b = 16.091(2)Å, c = 17.835(2)Å, β = 90.524(2)°, Z = 4) M‐N‐S angles in the range 168‐175°. This indicates a nearly linear coordination of the NS ligand. The metal atom is octahedrally coordinated in all cases. The rhenium(II) thionitrosyl complexes (5d5 “low‐spin” configuration, S = 1/2) are studied by EPR in the temperature range 295 > T > 130 K. In addition to the detection of the complexes formed during the reaction of [ReVINCl4] with S2Cl2 EPR investigations on diamagnetically diluted powders and single crystals of the system (Ph4P)[ReII/OsII(NS)Cl4py] are reported. The 185, 187Re hyperfine parameters are used to get information about the spin‐density distribution of the unpaired electron in the complexes under study. [TcVINCl4] reacts with S2Cl2 under formation of [TcII(NS)Cl4] which is not stable and decomposes under S8 elimination and rebuilding of [TcVINCl4] as found by EPR monitoring of the reaction.  相似文献   

16.
In the title compound, [Mn(C7H3NO4)(C3H4N2)(C12H8N2)(H2O)], the MnII centre is surrounded by one bidentate phenanthroline ligand [Mn—N = 2.383 (3) and 2.421 (3) Å], one tridentate dipicolinate ligand [Mn—N = 2.300 (3) Å, and Mn—O = 2.300 (2) and 2.357 (2) Å], one monodentate imidazole ligand [Mn—N = 2.238 (3) Å] and one water molecule [Mn—O = 2.157 (3) Å]. It displays a distorted pentagonal‐bipyramidal geometry, with neighbouring angles within the equatorial plane ranging from 68.05 (9) to 77.48 (10)°. Intermolecular O—H...O hydrogen bonds link the molecules into infinite chains. The chains are crosslinked by hydrogen bonds involving the carboxyl O atoms of the dipicolinate ligand and the protonated imidazole N atom, leading to an infinite two‐dimensional network sheet packing mode. The complete solid‐state structure can be described as a three‐dimensional supramolecular framework, stabilized by these intermolecular hydrogen‐bonding interactions and π–π stacking interactions involving the phenanthroline rings.  相似文献   

17.
Some new phosphoramidates were synthesized and characterized by 1H, 13C, 31P NMR, IR spectroscopy and elemental analysis. The structures of CF3C(O)N(H)P(O)[N(CH3)(CH2C6H5)]2 ( 1 ) and 4‐NO2‐C6H4N(H)P(O)[4‐CH3‐NC5H9]2 ( 6 ) were confirmed by X‐ray single crystal determination. Compound 1 forms a centrosymmetric dimer and compound 6 forms a polymeric zigzag chain, both via ‐N‐H…O=P‐ intermolecular hydrogen bonds. Also, weak C‐H…F and C‐H…O hydrogen bonds were observed in compounds 1 and 6 , respectively. 13C NMR spectra were used for study of 2J(P,C) and 3J(P,C) coupling constants that were showed in the molecules containing N(C2H5)2 and N(C2H5)(CH2C6H5) moieties, 2J(P,C)>3J(P,C). A contrast result was obtained for the compounds involving a five‐membered ring aliphatic amine group, NC4H8. 2J(P,C) for N(C2H5)2 moiety and in NC4H8 are nearly the same, but 3J(P, C) values are larger than those in molecules with a pyrrolidinyl ring. This comparison was done for compounds with six and seven‐membered ring amine groups. In compounds with formula XP(O)[N(CH2R)(CH2C6H5)]2, 2J(P,CH2)benzylic>2J(P,CH2)aliphatic, in an agreement with our previous study.  相似文献   

18.
IntroductionSincethepioneerworksofClearfieldandcoworkersinthe 196 0s ,1,2 layeredmetalphosphateshaveattractedmuchattentionduetotheirapplicationsonionex change ,intercalation ,heterogeneouscatalysisandsorp tion .3 7Amongthenumerouslamellarphases ,theproto typical…  相似文献   

19.
Synthesis and Crystal Structure of Te3O3(PO4)2, a Compound with 5‐fold Coordinate Tellurium(IV) Polycrystalline Te3O3(PO4)2 is formed during controlled dehydration of (Te2O3)(HPO4) with (Te8O10)(PO4)4 as an intermediate product. Colourless single crystals were prepared by heating stoichiometric amounts of the binary oxides P2O5 und TeO2 in closed silica glass ampoules at 590 °C for 8 hours. The crystal structure (P21/c, Z = 4, α = 12.375(2), b = 7.317(1), c = 9.834(1)Å, β = 98.04(1)°, 1939 structure factors, 146 parameters, R[F2 > 2σ(F2)] = 0.0187, wR2(F2 all) = 0.0367) was determined from four‐circle diffractometer data and consists of [TeO5] polyhedra und PO4 tetrahedra as the main building units. The framework structure is made up of cationic zigzag‐chains of composition [Te2O3]2+ which extend parallel to [001] and anionic [Te(PO4)2]2— units linked laterally to these chains. This leads to the formation of [Te2O3][Te(PO4)2] layers parallel to the bc plane which are interconnected via weak Te‐O bonds.  相似文献   

20.
A new organically templated nickel–zinc phosphate, [C2N2H10]·[Ni2.4Zn3.6(PO4)4(HPO4)]·H2O, has been synthesized from an aqueous solution containing NiCl2·6H2O, Zn(OAc)2·2H2O, H3PO4 and ethylenediamine as the structure‐directing agent. The compound crystallizes in the monoclinic system, space group C2/c (No. 15), a = 19.1563(5), b = 5.0316(2), c = 21.1724(5) Å, α = 103.201(3)°, V = 1986.81(11) Å3, Z = 4. It possesses a three‐dimensional framework constructed from MO4 (M = Ni, Zn), PO4, and HPO4 tetrahedra through their vertices. One‐dimensional 8‐ring channels are found in the structure, with the diprotonated organic templates residing in the tunnels and interacting with the inorganic framework by extensive hydrogen bonds. The framework is characterized by infinite helical chains of corner‐sharing MO4 (M = Ni, Zn) tetrahedra.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号