首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Zirconiumphthalocyanines: Synthesis and Properties of Chloride Ligated Phthalocyanines of Ter- and Quadrivalent Zirconium; Crystal Structure of cis-Di(triphenylphosphine)iminium-tri(chloro)phthalocyaninato(2–)zirconate(IV)-di(dichloromethane) cis-Di(chloro)phthalocyaninato(2–)zirconium(IV) is obtained by the reaction of ZrCl4 with phthalodinitrile in 1-chloronaphthaline at 230°C. It reacts with molten di(triphenylphosphine)iminiumchloride ((PNP)Cl) yielding cis-di(triphenylphosphine)iminium-tri(chloro)phthalocyaninato(2-)zirconate(IV), cis-(PNP)[ZrCl3Pc2?]. This crystallizes with two molecules of dichloromethane in the monoclinic space group P21/n with the lattice constants a = 15.219(4) Å, b = 20.262(10) Å, c = 20.719(4) Å, b? = 93.46(2)°, Z = 4. The seven coordinated Zr atom is situated in a “square base-trigonal cap” polyhedron. The plane of the three chlorine atoms runs parallel to the plane of the four isoindole nitrogen atoms Niso. The Zr–Cl distances range from 2.49 to 2.55 Å, the Zr? Niso distances from 2.26 to 2.29 Å. Due to ion packing effects the Pc2? ligand shows an asymmetrical convex distortion. The PNP cation adopts the bent conformation. The P? N? P angle is 139°, the P? N distance 1.58 Å. As confirmed by the cyclovoltammograms cis-(PNP)[ZrCl3Pc2?] is oxidized (anodically or chemically by Cl2) to yield cis-tri(chloro)phthalocyaninato(1–)zirconium(IV) and reduced (cathodically or chemically by [BH4]?) yielding chlorophthalocyaninato(2–)zirconium(III) and cis-di(triphenylphosphine)iminium-di(chloro)phthalocyaninato(2–)zirconate(III). The optical spectra show the typical π–π*-transitions of the Pc2? resp. Pc? ligand not much affected by the different states of oxidation and coordination of zirconium. The same is true for the vibrational spectra of the Pc2? resp. Pc? ligand. In the f.i.r. spectra between 350 and 150 cm?1 the asym. and sym. Zr? Cl stretching and Cl? Zr? Cl deformation vibration as well as the asym. Zr? N stretching vibration of the [ZrClxN4] skeleton (x = 1–3) is assigned.  相似文献   

2.
Mononuclear and Multiply Bridged Dinuclear Phthalocyaninates(1–/2–) of Yttrium by Solvent Controlled Condensation; Small Solvent Clusters as Ligands Green chlorophthalocyaninato(2–)yttrium(III), [Y(Cl)pc2–] forms when yttrium chloride is heated with o‐phthalonitrile in 1‐chloronaphthalene. Black cis‐di(chloro)phthalocyaninato(1‐)yttrium(III), cis[Y(Cl)2pc] is obtained as a stable intermediate by partial reduction. Both complexes are soluble in many O‐donor solvents and pyridine. The solubility in water is remarkable: [Y(Cl)pc2–] dissolves with green, cis[Y(Cl)2pc] with red‐violet color. Typical absorptions of the pc2– ligand are observed at 14800 and 29700 cm–1. A solvent dependent monomer‐dimer equilibrium is found for the pc radical. The monomer with absorptions at 12100 and 19900 cm–1 is favored in non‐polar solvents, while in polar solvents the dimer with absorptions at 8700, 13200 and 18600 cm–1 is preferred. cis‐Tri(dimethylformamide)chlorophthalocyaninato(2–)yttrium(III) etherate ( 1 ) crystallises from a solution of [Y(Cl)pc2–] in MeOH/dmf, cis‐tetra(dimethylsulfoxide)phthalocyaninato(2–)yttrium(III) chloride etherate methanol disolvate ( 2 ) from thf/dmso, μ‐di(chloro)‐μ‐di〈di(pyridine)(μ‐water)〉di(phthalocyaninato(2–)‐ yttrium(III)) ( 5 ) from py, and cis‐(chloro)pyridine(triphenylphosphine oxide)phthalocyaninato(2–)yttrium(III) semi‐etherate ( 3 ) is obtained from a solution of [Y(Cl)pc2–] and triphenylphosphine oxide in py. 1 condenses in MeOH yielding a (1 : 1)‐mixture ( 4 ) of μ‐di(chloro)di(〈trans‐(diwaterdimethanol)〉〈dimethanol〉phthalocyaninato(2–)yttrium(III)) ( 4 a ) and μ‐di(chloro)di(dimethylformamide〈dimethanol〉phthalocyaninato(2–)yttrium(III)) ( 4 b ); co‐ordinatively bound solvent clusters are in brakets. The structures of 1 – 5 have been established by X‐ray crystallography. Apart from 3 with hepta‐co‐ordinated yttrium, the metal ion prefers octa‐co‐ordination, and the bond arrangement around Y3+ is always a distorted quadratic antiprism. In the dinuclear complexes obtained by solvent controlled condensation both antiprisms share an edge by two μ‐Cl atoms in 4 , while in 5 the antiprisms are face‐shared by two trans positioned μ‐Cl atoms and μ‐O atoms, respectively. In 5 , the bent b〈{py}2(μ‐H2O)〉 cluster is stabilised by a combined interplanar bonding of pyridine by short N…H–O bonds (d(N…O) = 2.664(7) Å; 2.81(2) Å) and strong van‐der‐Waals interactions with the ecliptic pc2– ligands. 4 a and 4 b contain the dimeric methanol cluster 〈(MeOH)2〉, and 4 a in addition the cyclic heterotetrameric trans‐diwaterdimethanol cluster, transc〈(H2O)2(MeOH)2〉. The neutral clusters co‐ordinatively bound to the Y atom are compared with structurally established cluster‐anions of type 〈(OMe)(MeOH)〉, linear l〈(OMe)(MeOH)2, cyclic c〈(OH)3(H2O)33–, b〈{H2O}2(μ‐O)〉2–, and b{H2O}2(μ‐F)〉.  相似文献   

3.
cis-Trichlorophthalocyaninato(2?)tantalate(V) reacts with excess tetra(n-butyl)ammonium fluoride trihydrate yielding mixed crystals of the tetra(n-butyl)ammonium salts of cis-tetrafluorophthalocyaninato(2?)tantalate(V) and cis-trifluorophthalocyaninato(2?)tantalate(IV) in the ratio five to four. These crystallize in the monoclinic space group P21/ n with cell parameters: a = 13.368(2) Å, b = 13.787(2) Å, c = 23.069(3) Å, β = 93.35(1)°, Z = 4. Tav is octacoordinated with four F atoms and four Niso atoms in an antiprismatic cis-arrangement. The Tav-F distance varies from 1.919(7) to 1.966(4) Å. TaIV is heptacoordinated with three F atoms in a cis-arrangement. The TaIV-F distance varies from 1.74(1) to 1.966(4) Å. The Ta atom is located out of the centre of the N4 plane towards the F atoms by 1.234(3) Å. The Ta–N distances range from 2.261(6) to 2.310(6) Å.  相似文献   

4.
Intraconfigurational, Trip‐Multiplet, and Anomalously Polarised A1g and A2g Transitions in Electronic and Vibrational Resonance Raman Spectra of (Spin‐Degenerate) trans ‐Di(cyano)phthalocyaninatorhenates Brown bis(tetra(n‐butyl)ammonium) trans‐di(cyano)phthalocyaninato(2‐)rhenate(II) ( 1 ) is prepared by melting bis(phthalocyaninato(2‐)rhenium(II)) with tetra(n‐butyl)ammonium cyanide. According to electrochemical data, 1 is oxidised by iodine to yield blue tetra(n‐butyl)ammonium trans‐di(cyano)phthalocyaninato(2‐)rhenate(III) ( 2 ), whose cation exchange in the presence of bis(triphenylphosphine)iminium salts has been confirmed by x‐ray structure determination. 1 and 2 dissolve without dissociation of the cyano ligands in conc. sulfuric acid. Dilution with cold water precipitates blue trans‐di(cyano)phthalocyaninato(2‐)rhenium(III) acid. 1 and 2 are oxidised by bromine yielding violet trans‐di(cyano)phthalocyaninato(1‐)rhenium(III). Oxidation of 2 with dibenzoylperoxide and N‐chlorsuccinimide is described. 1 and 2 are characterised by polarised resonance Raman(RR) spectra, FIR/MIR spectra, and UV‐Vis‐NIR spectra. Due to a Kramers degenerate ground electronic state of low‐spin ReII, a polarisation anomaly of the totally symmetric vibrations a1g at 598 and 672 cm–1 with depolarisation ratios ρl > 3 is observed in the RR spectra of 1 . Weak bands in the unusual UV‐Vis‐NIR spectrum of 1 , starting at 10200 cm–1, are attributed to trip‐multiplet (TM) transitions. An electronic RR effect is detected for 2 . The selectively enhanced anomalously polarised line at 1009 cm–1 with ρl ≈ 15 and the (de)polarised lines between 1688 and 2229 cm–1 are attributed to intraconfigurational transitions A1g → A2g > A1g, B1g, B2g, Eg arising from the 3T1g ground electronic state of low‐spin ReIII split by spin‐orbit coupling and low symmetry (D ). Some of their vibronic bands are detected in the IR spectrum between 1900 and 4000 cm–1. B and Q transitions of 2 at 16700 and 31900 cm–1, respectively, as well as eight weak TM transitions are observed between 5050 and 26100 cm–1.  相似文献   

5.
Reaction between an aqueous ethanol solution of tin(II) chloride and that of 4‐propanoyl‐2,4‐dihydro‐5‐methyl‐2‐phenyl‐3 H‐pyrazol‐3‐one in the presence of O2 gave the compound cis‐dichlorobis(4‐propanoyl‐2,4‐dihydro‐5‐methyl‐2‐phenyl‐3 H‐pyrazol‐3‐onato) tin(IV) [(C26H26N4O4)SnCl2]. The compound has a six‐coordinated SnIV centre in a distorted octahedral configuration with two chloro ligands in cis position. The tin atom is also at a pseudo two‐fold axis of inversion for both the ligand anions and the two cis‐chloro ligands. The orange compound crystallizes in the triclinic space group P 1 with unit cell dimensions, a = 8.741(3) Å, b = 12.325(7) Å, c = 13.922(7) Å; α = 71.59(4), β = 79.39(3), γ = 75.18(4); Z = 2 and Dx = 1.575 g cm–3. The important bond distances in the chelate ring are Sn–O [2.041 to 2.103 Å], Sn–Cl [2.347 to 2.351 Å], C–O [1.261 to 1.289 Å] and C–C [1.401 Å] the bond angles are O–Sn–O 82.6 to 87.7° and Cl–Sn–Cl 97.59°. The UV, IR, 1H NMR and 119Sn Mössbauer spectral data of the compound are reported and discussed.  相似文献   

6.
Preparation and Properties of Tetra(n-butyl)ammonium cis -Trifluorophthalocyaninato(2–)zirconate(IV) and -hafnate(IV); Crystal Structure of (nBu4N) cis [Hf(F)3pc2–] cis-Dichlorophthalocyaninato(2–)metal(IV) of zirconium and hafnium reacts with excess tetra(n-butyl)-ammoniumfluoride trihydrate to yield tetra(n-butyl)-ammonium cis-trifluorophthalocyaninato(2–)metalate(IV), (nBu4N)cis[M(F)3pc2–] (M = Zr, Hf). (nBu4N)cis[Hf(F)3pc2–] crystallizes in the monoclinic space group P21/n (# 14) with cell parameters a = 13.517(1) Å, b = 13.856(1) Å, c = 23.384(2) Å, α = 92.67(1)°, Z = 4. The Hf atom is in a ”︁square base-trigonal cap”︁”︁ polyhedron, coordinating three fluorine atoms and four isoindole nitrogen atoms (Niso). The Hf atom is sandwiched between the (Niso)4 and F3 planes (d(Hf–CtN) = 1.218(3) Å; d(Hf–CtF) = 1.229(3) Å; CtN/F: centre of the (Niso)4, respectively F3 plane). The average Hf–Niso and Hf–F distances are 2.298 and 1.964 Å, respectively, the average F–Hf–F angle is 84.9°. The pc2– ligand is concavely distorted. The optical spectra show the typical metal independent π-π* transitions of the pc2– ligand at c. 14700 and 29000 cm–1. In the FIR/MIR spectra vibrations of the MF3 skeleton are detected at 545, 489, 274 cm–1 (M = Zr) and 536, 484, 263 cm–1 (M = Hf), respectively.  相似文献   

7.
Starting with a zirconium salt and LH2 , (pydaH2)2+(pydc)2?, (pyda=2, 6‐pyridinediamine; pydcH2=2,6‐pyridinedicarboxylic acid), as a 1:1 proton transfer self‐associated compound, two different compounds were resulted. One of them is a new complex of ZrIV with a flat pyridine containing ligand and structure of (pydaH)2[Zr(pydc)3] · 5H2O (1) and the other, (pydaH)+(NO3)? (2) is an ion pair with no zirconium ion. The zirconium(IV) complex (1) is crystallized in triclinic system with space group and Z = 2, the crystallographic parameters are: a = 10.612(5) Å, b = 10.617(5) Å, c = 16.815(8) Å, α = 103.654(9)°, β = 95.821(9)°, γ = 98.891(9)° and R‐value for 16767 collected reflections is 0.0592. The ion pair (2) has crystals of monoclinic system with P21 space group and Z = 2. Its crystallographic parameters are: a = 3.6227(11) Å, b = 10.034(4) Å, c = 10.296(4) Å, β = 93.422(9)° and R‐value for 4031 collected reflections is 0.0521. The two compounds were characterized with elemental analysis, ESI/MS, NMR and IR spectroscopy.  相似文献   

8.
ReV‐Phthalocyaninates and ReV‐Tetraphenylporphyrinates: Synthesis, Properties, and Crystal Structure Hexa‐coordinated ReV phthalocyaninates (pc) and ReV tetraphenylporphyrinates (tpp) of the type [Re(O)(X)p] (p: pc, tpp) with X = OCH3, ReO4, Cl/pc, F/pc, OH/tpp, [{Re(O)p}2(μ‐O)] and (cat)trans[Re(O)2p] (cat: nBu4N, Et4N/tpp) have been isolated and characterised by their UV‐Vis‐NIR, IR and resonance Raman (RR) spectra. In the RR spectra, the intensity of the (Re=O) and (Re–X) stretching vibrations (ν(Re=O/–X)) in [Re(O)(X)p] and [{Re(O)p}2(μ‐O)] is selectively enhanced with excitation in coincidence with O → Re–CT between ca 19000 and 22000 cm–1. In accordance to selection rules, data of ν(Re=O/–X) compare well with those of the complementary IR spectra. Because of the trans influence ν(Re=O) depends on the axial ligand X, ranging from 940 to 1010 cm–1. The crystallographic characterization of [Re(O)(ReO4)tpp] · CHCl3 ( 1 ), [{Re(O)tpp}2(μ‐O)] · py ( 2 ), (nBu4N)trans[Re(O)2tpp] ( 3 ), and (Et4N)trans[Re(O)2tpp] · 2 H2O ( 4 ) is described. The tpp centered Re atom is in a distorted octahedron of four N atoms of the porphyrinate and two axial O atoms in a mutual trans position. Average Re–N distances are 2.062 Å in 1 , 2.086 Å in 2 , 2.089 Å in 3 , and 2.082/2.086 Å in 4 . The Re–O distance of the terminal rhenyl group varies from 1.64(1) Å ( 1 ), 1.73(1)/1.70(1) Å ( 2 ) to 1.80(1) Å ( 4 ), that of the monodentate rhenate(VII) from 1.70(1) to 1.75(1) Å. The Re–O distances in the bridge of the linear O=Re–O–Re=O skeleton in 2 are 1.95(1)/1.89(1) Å. In 1 , with a bent O=Re–O^ ReO3 moiety (∢(Re–O^ReO3) = 143(1)°) and a mostly ionic coordinated rhenate(VII), these distances differ significantly (2.20(1) Å vs 1.75(1) Å). The porphyrinate in 1 is saucer‐shaped with a distal rhenate(VII), and the tpp centered Re atom is displaced by 0.31 Å out of the (N)4 plane towards the rhenyl‐O atom. The distorted porphyrinates in 2 are rotated by 30.4(4)°, and the Re atoms are 0.1 Å out of their (N)4 planes towards the terminal O atoms. In 3 and 4 the porphyrinates are almost planar with the Re atom in their centre.  相似文献   

9.
The new electron deficient tin(IV) tetraphenylporphyrinato trifluoromethanesulfonate, [SnIV(tpp)(OTf)2], was used as an efficient catalyst for the alcoholysis, hydrolysis and acetolysis of epoxides. Conversion of epoxides to thiiranes and acetonides were also performed efficiently in the presence of this catalyst.  相似文献   

10.
Preparation and Properties of Phthalocyaninato(2–)indates(III) with Monodentate Acido Ligands; Crystal Structure of Tetra(n-butyl)ammonium cis -Difluorophthalocyaninato(2–)indate(III) Hydrate Tetra(n-butyl)ammonium cis-diacidophthalocyaninato(2–)indates(III) with the monodentate acido ligands fluoride, chloride, cyanide and formiate are synthezised by the reaction of chlorophthalocyaninatoindium(III) or cis-dihydroxophthalocyaninatoindate(III) with the respective tetra(n-butyl)ammonium salt or ammonium formiate and are characterized by their UV/VIS spectra and their vibrational spectra. The difluoro-complex salt crystallizes as a hydrate ((nBu4N)cis[In(F)2pc2–] · H2O) in the monoclinic space group P21/n (no. 14) with cell parameters: a = 13.081(3) Å, b = 13.936(2) Å, c = 23.972(2) Å; β = 97.79(1)°, Z = 4. Hexa-coordinated indium is surrounded by four isoindole nitrogen atoms (Niso) and two cis-positioned fluorine atoms. The average In–F and In–Niso distance are 2.0685(4) and 2.2033(5) Å, respectively, and the F–In–F angle is 81.5(1)°. The In atom is displaced outside the centre (Ct) of the Niso plane towards the fluoride ligands: d(In–Ct) = 0.953(1) Å. The phthalocyaninato(2–) core is nonplanar (unsymmetrical concave distortion).  相似文献   

11.
The complexes di‐n‐butyldi(2‐pyridinethiolato‐N‐oxide)tin(IV) (1), diphenyldi(2‐pyridinethiolato‐N‐oxide)tin(IV) ( 2 ) and dibenzyldi(2‐pyridinethiolato‐N‐oxide)tin(IV) ( 3 ) are synthesized and characterized by elemental analyses, IR, 1H, 13C, 119Sn NMR spectroscopy, and their structures are determined by X‐ray crystallography. In complex 1 the coordination geometry at tin is a skew‐trapezoidal bipyramid, with cisS,S and cisO,O atoms occupying the trapezoidal plane and two n‐butyl groups occupying the apical positions, which also exhibits strong π–π stacking interactions. In complexes 2 and 3 the geometry at tin is distorted cis‐octahedral, with cisO,O and cisC,C atoms occupying the equatorial plane and transS,S atoms occupying the apical positions. Their in vitro cytotoxicity against two human tumour cell lines, MCF‐7 and WiDr is reported. The ID50 values found are comparable to those found for cis‐platin, but lower than for many other diorganotin compounds. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

12.
ZrIV and TaV Complexes with Methano‐Bridged Bis(aryloxy) Ligands The bis(aryloxy) ligand precursor compounds bis(2‐trimethylsiloxy‐5‐tbutylphenyl)methane (L–SiMe3) and its bromoderivative (2‐trimethylsiloxy‐3‐bromo‐5‐tbutylphenyl)(2′‐trimethylsiloxy‐5′‐tbutylphenyl)methane (LBr–SiMe3) are prepared in analogy to the corresponding calixarenes in excellent yields. X‐ray structure analysis for LBr–SiMe3: space group P21/c, a = 12.462(7), b = 10.466(6), c = 23.315(14) Å, β = 105.02(4)°, V = 2937(3) Å3, Z = 4. L–SiMe3 and LBr–SiMe3 react with ZrIV and TaV chlorides in very good yields forming di‐ and trinuclear complexes. From the reaction of CpZrCl3 with LBr–SiMe3 in the ratio of 3 : 2 a Zr3 complex ( 7 ) is obtained, with one LBr ligand only, which Zr atoms are bridged by a μ3‐oxygen. The X‐ray structure analysis of 7 (space group R 3, a = 33.23(6), c = 24.47(8) Å, V = 23405(128) Å3, Z = 18) additionally reveals that one phenolato oxygen atom of the LBr ligand is terminally bound to a distorted tetragonal‐pyramidal coordinated Zr atom, while the second phenolato oxygen atom of the LBr ligand forms a bridge to another Zr atom with a distorted octahedral coordination. The third Zr atom is also found in a distorted octahedral coordination mode. The reactions of L–SiMe3 and LBr–SiMe3 with CpTaCl4 and TaCl5 yield dinuclear Ta complexes with a bridging bis(aryloxy) ligand. NMR spectroscopic data point out that the coordination of the bis(aryloxy) ligands in the Ta complexes very much resembles that in the Zr3‐complex with one terminal and one bridging phenolato oxygen atom. The Zr3 and the Ta complexes LBrTa2Cp2Cl6 and LTa2Cl8 were tested with respect to their catalytic properties in olefin polymerisation reactions in the presence of MAO.  相似文献   

13.
Soluble methane monooxygenase (sMMO) is an enzyme that converts alkanes to alcohols using a di(μ‐oxo)diiron(IV) intermediate Q at the active site. Very large kinetic isotope effects (KIEs) indicative of significant tunneling are observed for the hydrogen transfer (H‐transfer) of CH4 and CH3CN; however, a relatively small KIE is observed for CH3NO2. The detailed mechanism of the enzymatic H‐transfer responsible for the diverse range of KIEs is not yet fully understood. In this study, variational transition‐state theory including the multidimensional tunneling approximation is used to calculate rate constants to predict KIEs based on the quantum‐mechanically generated intrinsic reaction coordinates of the H‐transfer by the di(μ‐oxo)diiron(IV) complex. The results of our study reveal that the role of the di(μ‐oxo)diiron(IV) core and the H‐transfer mechanism are dependent on the substrate. For CH4, substrate binding induces an electron transfer from the oxygen to one FeIV center, which in turn makes the μ‐O ligand more electrophilic and assists the H‐transfer by abstracting an electron from the C?H σ orbital. For CH3CN, the reduction of FeIV to FeIII occurs gradually with substrate binding and H‐transfer. The charge density and electrophilicity of the μ‐O ligand hardly change upon substrate binding; however, for CH3NO2, there seems to be no electron movement from μ‐O to FeIV during the H‐transfer. Thus, the μ‐O ligand appears to abstract a proton without an electron from the C?H σ orbital. The calculated KIEs for CH4, CH3CN, and CH3NO2 are 24.4, 49.0, and 8.27, respectively, at 293 K, in remarkably good agreement with the experimental values. This study reveals that diverse KIE values originate mainly from tunneling to the same di(μ‐oxo)diiron(IV) core for all substrates, and demonstrate that the reaction dynamics are essential for reproducing experimental results and understanding the role of the diiron core for methane oxidation in sMMO.  相似文献   

14.
A polymeric VIV‐Cd compound, {(NH4)2[(VIVO)22‐O)(nta)2Cd(H2O)2]·H2O}n (H3nta = nitrilotriacetic acid), has been prepared and characterized by single‐crystal X‐ray diffraction. The compound crystallizes in the monoclinic space group C2/c with a = 17.3760(2) Å, b = 8.0488(1) Å, c = 17.3380(2) Å, β = 107.9690(10)°, V = 2306.55(5) Å3, Z = 4, and R1 = 0.0303 for 1958 observed reflections. The structure exhibits a heterometallic three‐dimensional network formed by polymeric [(VIVO)22‐O)(nta)2Cd(H2O)2]2? anions.  相似文献   

15.
Two new solid‐state uranium(IV) sulfate x‐hydrate complexes (where x is the total number of coordinated plus solvent waters), namely catena‐poly[[pentaaquauranium(IV)]‐di‐μ‐sulfato‐κ4O:O′] monohydrate], {[U(SO4)2(H2O)5]·H2O}n, and hexaaquabis(sulfato‐κ2O,O′)uranium(IV) dihydrate, [U(SO4)2(H2O)6]·2H2O, have been synthesized, structurally characterized by single‐crystal X‐ray diffraction and analyzed by vibrational (IR and Raman) spectroscopy. By comparing these structures with those of four other known uranium(IV) sulfate x‐hydrates, the effect of additional coordinated water molecules on their structures has been elucidated. As the number of coordinated water molecules increases, the sulfate bonds are displaced, thus changing the binding mode of the sulfate ligands to the uranium centre. As a result, uranium(IV) sulfate x‐hydrate changes from being fully crosslinked in three dimensions in the anhydrous compound, through sheet and chain linking in the tetra‐ and hexahydrates, to fully unlinked molecules in the octa‐ and nonahydrates. It can be concluded that coordinated waters play an important role in determining the structure and connectivity of UIV sulfate complexes.  相似文献   

16.
In the new tin(IV) and copper(II) complexes, cis‐dichlorido‐trans‐dimethyl‐cis‐bis(N,N′,N′′‐tricyclohexylphosphoric triamide‐κO)tin(IV), [Sn(CH3)2Cl2(C18H36N3OP)2], (I), and trans‐diaquabis(N,N′,N′′‐tricyclohexylphosphoric triamide‐κO)copper(II) dinitrate–N,N′,N′′‐tricyclohexylphosphoric triamide (1/2), [Cu(C18H36N3OP)2(H2O)2](NO3)2·2C18H36N3OP, (II), the N,N′,N′′‐tricyclohexylphosphoric triamide (PTA) ligands exist as hydrogen‐bonded dimers via P=O...H—N interactions around the metal center. The asymmetric unit in (I) consists of one complete complex molecule located on a general position. The SnIV coordination geometry is octahedral with two cis hydrogen‐bonded PTA ligands, two cis chloride ligands and two trans methyl groups. The asymmetric unit in (II) contains one half of a [Cu(PTA)2(H2O)2]2+ dication on a special position (site symmetry for the Cu atom), one nitrate anion and one free PTA molecule, both on general positions. The complex adopts a square‐planar trans‐[CuO2O2] coordination geometry, with the CuII ion coordinated by two PTA ligands and two water molecules. Each of the noncoordinated PTA molecules is hydrogen bonded to a neighboring coordinated PTA molecule and an adjacent water molecule; the phosphoryl O atom acts as a double‐H‐atom acceptor. The P atoms in the PTA ligands of both complexes and in the noncoordinated hydrogen‐bonded molecules in (II) adopt a slightly distorted tetrahedral environment.  相似文献   

17.
Syntheses and Properties of cis -Diacidophthalocyaninato(2–)thallates(III); Crystal Structure of Tetra(n-butyl)ammonium cis -dinitrito(O,O ′)- and cis -dichlorophthalocyaninato(2–)thallate(III) Blue green cis-diacidophthalocyaninato(2–)thallate(III), cis[Tl(X)2pc2–] (X = Cl, ONO′, NCO) is prepared from iodophthalocyaninato(2–)thallium(III) and the corresponding tetra(n-butyl)ammonium salt, (nBu4N)X in dichloromethane, and isolated as (nBu4N)cis[Tl(X)2pc2–]. (nBu4N)cis[Tl(ONO′)2pc2–] ( 1 ) and (nBu4N)cis[Tl(X)2pc2–] · 0,5 (C2H5)2O ( 2 ) crystallize in the monoclinic space group P21/n with cell parameters for 1: a = 14.496(2) Å, b = 17.293(5) Å, c = 18.293(2) Å, β = 98.76(1)° resp. for 2 : a = 13.146(1) Å, b = 14.204(5) Å, c = 24.900(3) Å, β = 93.88(1)°; Z = 4. In 1 , the octa-coordinated Tl atom is surrounded by four isoindole-N atoms (Niso) and four O atoms of the bidental nitrito(O,O′) ligands in a distorted antiprism. The Tl–Niso distances vary between 2.257(3) and 2.312(3) Å, the Tl–O distances between 2.408(3) and 2.562(3) Å. In 2 , the hexa-coordinated Tl atom ligates four Niso atoms and two Cl atoms in a typical cis-arrangement. The average Tl–Niso distance is 2.276 Å, the average Tl–Cl distance is 2.550 Å. In 1 and 2 , the Tl atom is directed out of the centre of the (Niso)4 plane (CtN) towards the acido ligands (d(Tl–CtN) = 1.144(1) Å in 1 , 1.116(2) Å in 2 ), and the phthalocyaninato ligand is concavely distorted. The vertical displacements of the periphereal C atoms amounts up to 0.82 Å. The optical and vibrational spectra as well as the electrochemical properties are discussed.  相似文献   

18.
The bitopic ligand 1,2‐bis(1,2,4‐triazol‐4‐yl)ethane (tr2eth) provides an unprecedented short‐distance N1:N2‐triazole bridging of CuI and VIV ions in poly[bis[μ4‐1,2‐bis(1,2,4‐triazol‐4‐yl)ethane]di‐μ2‐fluorido‐tetrafluoridodi‐μ2‐oxido‐dicopper(I)divanadium(IV)], [Cu2V2F6O2(C6H8N6)2]n. The CuI ions and tr2eth linkers afford a two‐dimensional square‐grid topology involving centrosymmetric (tr)Cu(μ‐tr)2Cu(tr) [tr is triazole; Cu—N = 1.9525 (16)–2.0768 (18) Å] binuclear net nodes, which are expanded in a third dimension by centrosymmetric [V2O2F6]2− pillars. The concerted μ‐tr and μ‐O bridging between the CuI and VIV ions allows a multi‐centre accommodation of the vanadium oxyfluoride moiety on a cationic Cu/tr2eth matrix [Cu—O = 2.1979 (15) Å and V—N = 2.1929 (17) Å]. The distorted octahedral coordination of [VONF4] is completed by two terminal and two bridging F ions [V—F = 1.8874 (14)–1.8928 (13) and 2.0017 (13)–2.1192 (12) Å, respectively]. The resulting three‐dimensional framework has a primitive cubic net topology and adopts a threefold interpenetration.  相似文献   

19.
The title compound, {[PtIIPtIVI2(C2H8N2)4](HPO4)(H2PO4)I·3H2O}n, has a chain structure composed of square‐planar [Pt(en)2]2+ and elongated octa­hedral trans‐[PtI2(en)2]2+ cations (en is ethyl­ene­diamine) stacked alternately along the c axis and bridged by the I atoms; a three‐dimensionally valence‐ordered system exists with respect to the Pt sites. The title compound also has a unique cyclic tetra­mer structure composed of two hydrogenphosphate and two dihydrogenphosphate ions connected by strong hydrogen bonds [O⋯O = 2.522 (10), 2.567 (10) and 2.569 (11) Å]. The Pt and I atoms form a zigzag ⋯I—PtIV—I⋯PtII⋯ chain, with PtIV—I bond distances of 2.6997 (7) and 2.6921 (7) Å, inter­atomic PtII⋯I distances of 3.3239 (8) and 3.2902 (7) Å, and PtIV—I⋯PtII angles of 154.52 (3) and 163.64 (3)°. The structural parameters indicating the mixed‐valence state of platinum, expressed by δ = (PtIV—I)/(PtII—I), are 0.812 and 0.818 for the two independent I atoms.  相似文献   

20.
In the title compound, [ZrCl2(C14H12N)2(C4H8O)2]·1.5C6H6, the Zr atom is pseudo‐octahedral, with two Cl atoms in trans positions and two tetra­hydro­furan mol­ecules in cis positions. The two 3,6‐di­methyl­carbazolyl ligands are in cis positions and are canted with respect to one another. The two Zr—N distances are 2.1148 (18) and 2.1236 (18) Å, and the N—Zr—N angle is 95.08 (7)°. The title compound crystallizes as the benzene solvate, with one of the benzene mol­ecules positioned on an inversion center.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号