首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
The title compounds were prepared by reaction of the elemental components. Of these Sc5Bi3 is a new compound. Its orthorhombic β‐Yb5Sb3 type crystal structure was determined from single‐crystal X‐ray data: Pnma, a = 1124.4(1) pm, b = 888.6(1) pm, c = 777.2(1) pm, R = 0.024 for 1140 structure factors and 44 variable parameters. For the other compounds we have established the crystal structures. ZrBi has ZrSb type structure with a noticeable homogeneity range. This structure type was also found for the low temperature (α) form of HfSb and for HfBi. For α‐HfSb this structure was refined from single‐crystal X‐ray data: Cmcm, a = 377.07(4) pm, b = 1034.7(1) pm, c = 1388.7(1) pm, R = 0.043 for 432 F values and 22 variables. HfBi2 has TiAs2 type structure: Pnnm, a = 1014.2(2) pm, b = 1563.9(3) pm, c = 396.7(1) pm. The structure was refined from single‐crystal data to a residual of R = 0.074 for 1038 F values and 40 variables. In addition, a zirconium bismuthide, possibly stabilized by light impurity elements X and crystallizing with the hexagonal Mo5Si3C1–x type structure, was observed: Zr5Bi3X1–x, a = 873.51(6) pm, c = 599.08(5) pm. The positions of the heavy atoms of this structure were refined from X‐ray powder film data. Various aspects of impurity stabilization of intermetallics are discussed.  相似文献   

2.
The new ternary rhodium borides Mg3Rh5B2 and Sc3Rh5B2 (P4/mbm, Z = 2; a = 943.4(1) pm, c = 292.2(1) pm and a = 943.2(1) pm, c = 308.7(1) pm, respectively) crystallize with the Ti3Co5B2 type structure. Mg and Sc may in part be substituted by a variety of elements M. For M = Si and Fe, homogeneity ranges were found according to A3–xMxRh5B2 with 0 ≤ x ≤ 1.0 for A = Sc and with x up to 1.5 for A = Mg. Quaternary compounds with x = 1 (A2MRh5B2: A/M in short) were prepared with M = Be, Al, Si, P, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Ge, As, Sn (Co, Ni only with A = Mg; Sn only with A = Sc; P, As with deficiencies). Single crystal X‐ray investigations show an ordered substitutional variant of the Ti3Co5B2 type in which the M atoms are arranged in chains along [001] with intrachain and interchain M–M distances of about 300 pm and 660 pm, respectively. Measuring the magnetisation (1.7 K–800 K) of the phases Mg/Mn, Sc/Mn, Mg/Fe, and Sc/Fe reveals antiferromagnetic interactions in the first and dominating ferromagnetic intrachain interactions in the remaining ones. Interchain interactions of antiferromagnetic nature are evident in Sc/Mn and Mg/Fe leading to metamagnetism below TN = 130 K, while Sc/Fe behaves ferromagnetically below TC = 450 K. The overall trend towards stronger ferromagnetic interactions with increasing valence electron concentration is obvious.  相似文献   

3.
The four compounds Ln3Pt7Sb4 (Ln = Ce, Pr, Nd, and Sm) were prepared from the elements by arc‐melting and subsequent heat treatment in resistance and high‐frequency furnaces. The crystal structure of these isotypic compounds was determined from four‐circle X‐ray diffractometer data of Nd3Pt7Sb4 [C2/m, a = 1644.0(2) pm, b = 429.3(1) pm, c = 1030.6(1) pm, β = 128.58(1)°, Z = 2, R = 0.032 for 698 structure factors and 46 variable parameters] and Sm3Pt7Sb4 [a = 1639.5(2) pm, b = 427.1(1) pm, c = 1031.8(1) pm, β = 128.76(1)°, Z = 2, R = 0.025 for 816 F‐values and 46 variables]. The structure is isotypic with that of the homologous phosphide Er3Pd7P4. In contrast to the structure of this phosphide, where the phosphorus atoms have the coordination number nine, the larger antimony atoms of Nd3Pt7Sb4 obtain the coordination number ten. The structural relationships between the structures of EuNi2—xSb2, EuPd2Sb2, CeNi2+xSb2—x, Ce3Pd6Sb5, and Nd3Pt7Sb4, all closely related to the tetragonal BaAl4 (ThCr2Si2) type structure, are briefly discussed emphasizing their space group relationships.  相似文献   

4.
The title compounds are formed by peritectic reactions. Single crystals could be isolated from samples with high antimony content. Their structure was determined for Dy2Sb5 from four‐circle X‐ray diffractometer data: P21/m, a = 1306.6(1) pm, b = 416.27(4) pm, c = 1458.4(1) pm, β = 102.213(8)°, Z = 4, R = 0.061 for 2980 structure factors and 86 variable parameters. All dysprosium atoms have nine antimony neighbors forming tricapped trigonal prisms with Dy–Sb distances varying between 308 and 338 pm. The antimony atoms occupy ten different sites with greatly varying coordination. One extreme case is an antimony atom surrounded only by dysprosium atoms in trigonal prismatic arrangement, the other one is an antimony atom in distorted octahedral antimony coordination. The various antimony‐antimony interactions (with Sb–Sb distances varying between 284 and 338 pm) are rationalized by combining the Zintl‐Klemm concept with bond‐length bond‐strength considerations.  相似文献   

5.
Abstract. Twenty five ternary phosphides crystallizing with four different but closely related structure types were prepared using elemental tin as a flux. Their lattice constants are reported. New compounds include Sc2Fe12P7, Sc3.6Fe10.4P7, Y2Co12P7, and Hf2T12P7 with T = Fe, Co, Ni. They crystallize with the hexagonal Zr2Fe12P7 type structure, which was refined from single‐crystal X‐ray data of Sc3.6Fe10.4P7: a = 944.1(1) pm, c = 363.4(1) pm, R = 0.041 for 719 unique structure factors and 23 variable parameters. The excess scandium atoms occupy one of the four iron sites of the Zr2Fe12P7 type structure which has a higher coordination number than the other three iron sites. The two isotypic phosphides Sc2Fe12P7 and Sc3.6Fe10.4P7 do not form a continuous series of solid solutions. The new compounds Sc2Co4P3 and Sc2Ni4P3 are isotypic with Hf2Co4P3. This hexagonal structure was refined for Sc2Co4P3 from single crystal data: a = 1211.5(2) pm, c = 363.7(1) pm, R = 0.025 for 500 Fo and 38 variables. Other new compounds reported are Sc5Ni19P12, Zr5Fe19P12, Hf5Fe19P12, and Hf5Co19P12 which crystallize with Sc5Co19P12 type structure, and the Yb6Co30P19 type phosphides Sc6Co30P19, Zr6Co30P19, and Hf6Co30P19. The structural relationships of these ternary phosphides are discussed with special attention to the environments of the transition metal atoms.  相似文献   

6.
LiRuSn4, LiRhSn4, and LiIrSn4 were prepared by reaction of the elements in sealed tantalum ampoules at 1220 K. The tubes were subsequently annealed at 870 K for one week. The three stannides were investigated by X‐ray diffraction on powders and single crystals and the structures were refined from single crystal data: I4/mcm, a = 662.61(3), c = 1116.98(7) pm, wR2 = 0.0730, 283 F2 values for LiRuSn4, a = 658.73(5), c = 1136.4(1) pm, wR2 = 0.0532, 313 F2 values for LiRhSn4 and a = 657.34(5), c = 1130.4(1) pm, wR2 = 0.0343, 176 F2 values for LiIrSn4 with 11 variables for each refinement. LiRuSn4, LiRhSn4, and LiIrSn4 crystallize with a ternary ordered variant of the PdGa5 structure. The transition metal (T) atoms have a square antiprismatic tin environment and they form two‐dimensional [TSn4] polyanions with relatively short Ru—Sn (279 pm), Rh—Sn (280 pm), and Ir—Sn (280 pm) distances. The lithium atoms connect the polyanionic [TSn4] layers. They are located in square prismatic voids formed by tin atoms. The crystal chemistry and chemical bonding of these stannides is briefly discussed.  相似文献   

7.
The rare earth ruthenium gallides Ln2Ru3Ga5 (Ln = La, Ce, Pr, Nd, Sm) were prepared by arc‐melting of cold‐pressed pellets of the elemental components. They crystallize with a tetragonal structure (P4/mnc, Z = 4) first reported for U2Mn3Si5. The crystal structures of the cerium and samarium compounds were refined from single‐crystal X‐ray data, resulting in significant deviations from the ideal compositions: Ce2Ru2.31(1)Ga5.69(1), a = 1135.10(8) pm, c = 580.58(6) pm, RF = 0.022 for 742 structure factors; Sm2Ru2.73(2)Ga5.27(2), a = 1132.95(9) pm, c = 562.71(6) pm, RF = 0.026 for 566 structure factors and 32 variable parameters each. The deviations from the ideal compositions 2:3:5 are discussed. A mixed Ru/Ga occupancy occurs only for one atomic site. The displacement parameters are relatively large for atoms with mixed occupancy within their coordination shell and small for atoms with no neighboring sites of mixed occupancy. Chemical bonding is analyzed on the basis of interatomic distances. Ln–Ga bonding is stronger than Ln–Ru bonding. Ru–Ga bonding is strong and Ru–Ru bonding is weak. The Ga–Ga interactions are of similar strength as in elemental gallium.  相似文献   

8.
The magnesium transition metal stannides MgRuSn4 and MgxRh3Sn7—x (x = 0.98—1.55) were synthesized from the elements in glassy carbon crucibles in a water‐cooled sample chamber of a high‐frequency furnace. They were characterized by X‐ray diffraction on powders and single crystals. MgRuSn4 adopts an ordered PdGa5 type structure: I4/mcm, a = 674.7(1), c = 1118.1(2) pm, wR2 = 0.0506, 515 F2 values and 12 variable parameters. The ruthenium atoms have a square‐antiprismatic tin coordination with Ru—Sn distances of 284 pm. These [RuSn8/2] antiprisms are condensed via common faces forming two‐dimensional networks. The magnesium atoms fill square‐prismatic cavities between adjacent [RuSn4] layers with Mg—Sn distances of 299 pm. The rhodium based stannides MgxRh3Sn7—x crystallize with the cubic Ir3Ge7 type structure, space groupe Im3m. The structures of four single crystals with x = 0.98, 1.17, 1.36, and 1.55 have been refined from X‐ray diffractometer data. With increasing tin substitution the a lattice parameter decreases from 932.3(1) pm for x = 0.98 to 929.49(6) pm for x = 1.55. The rhodium atoms have a square antiprismatic tin/magnesium coordination. Mixed Sn/Mg occupancies have been observed for both tin sites but to a larger extend for the 12d Sn2 site. Chemical bonding in MgRuSn4 and MgxRh3Sn7—x is briefly discussed.  相似文献   

9.
The quaternary germanides RE3TRh4Ge4 (RE = Ce, Pr, Nd; T = Nb, Ta) were synthesized from the elements by arc‐melting and subsequent annealing in a muffle furnace. The structure of Ce3TaRh4Ge4 was refined from single‐crystal X‐ray diffractometer data: new type, Pbam, a = 719.9(2), b = 1495.0(3), c = 431.61(8), wR2 = 0.0678, 1004 F2 values, and 40 variables. Isotypy of the remaining phases was evident from X‐ray powder patterns. Ce3TaRh4Ge4 is a new superstructure variant of the aristotype AlB2 with an ordering of cerium and tantalum on the aluminum site, whereas the honey‐comb network is built up by a 1:1 ordering of rhodium and germanium. This crystal‐chemical relationship is discussed based on a group‐subgroup scheme. The distinctly different size of tantalum and cerium leads to a pronounced puckering of the [Rh4Ge4] network, which shows the shortest interatomic distances (253–271 pm Rh–Ge) within the Ce3TaRh4Ge4 structure. Another remarkable structural feature concerns the tantalum coordination with six shorter Ta–Rh bonds (265–266 pm) and six longer Ta–Ge bonds (294–295 pm). The [Rh4Ge4] network fully separates the tantalum and cerium atoms (Ce–Ce > 387 pm, Ta–Ta > 431 pm, and Ce–Ta > 359 pm). The electronic density of states DOS from DFT calculations show metallic behavior with large contributions of localized Ce 4f as well as itinerant ones from all constituents at the Fermi level but no significant magnetic polarization on Ce could be identified. The bonding characteristics described based on overlap populations illustrate further the crystal chemistry observations of the different coordination of Ce1 and Ce2 in Ce3TaRh4Ge4. The Rh–Ge interactions within the network are highlighted as dominant. The bonding magnitudes follow the interatomic distances and identify differences of Ta bonding vs. Ce1/Ce2 bonding with the Rh and Ge substructures.  相似文献   

10.
The new cubic compound Fe0.5Ni0.5P3 (a = 775.29(5) pm) as well as the known compounds CoP3 and NiP3 were synthesized from the elemental components using tin as a flux. Their skutterudite (CoAs3) type structures were refined from single‐crystal X‐ray data. The new compound GdFe4P12 was prepared by reaction of an alloy Gd1/3Fe2/3 with phosphorus in a tin flux. Its cubic “filled” skutterudite (LaFe4P12 type) structure was refined from single‐crystal X‐ray data: a = 779.49(4) pm, R = 0.019 for 304 structure factors and 11 variable parameters. SmFe4P12 shows Van Vleck paramagnetism while GdFe4P12 is a soft ferromagnet with a Curie temperature of TC = 22(5) K. Both are metallic conductors. The new isotypic polyarsenide NdFe4As12 (a = 830.9(1) pm) was obtained by reacting NdAs2 with iron and arsenic in the presence of a NaCl/KCl flux. The new isotypic polyantimonide Eu0.54(1)Co4Sb12 (a = 909.41(8) pm) was prepared by reaction of EuSb2 with cobalt and antimony. Its structure was refined from single‐crystal X‐ray data to a residual of 0.024 (137 F values, 12 variables). A comparison of the Fe–P and P–P bond lengths in the compounds AFe4P12, where the A atoms (A = Ce, Eu, Gd, Th) have differing valencies, suggests that the Fermi level cuts through Fe–P bonding and P–P antibonding bands.  相似文献   

11.
A borophosphate hydrate with general composition {(NH4)xCo((3–x)/2)}(H2O)2[BP2O8] · (1 – x) H2O (x ≈ 0.5) was prepared under mild hydrothermal conditions (T = 170 °C). The crystal structure of the purple title compound was refined in space group P65 (no. 170) as a merohedric twin (a = 949.14 pm, c = 1558.25 pm, R1 = 0.037, wR2 = 0.092 for all data). According to preliminary X‐ray investigations, vis‐spectra, and magnetic susceptibility measurements, a second blue coloured variant exhibits a superstructure of the title compound with a change in coordination numbers around cobalt from six and five to six and four. Both phases show reversible de‐/rehydration properties.  相似文献   

12.
Black single crystals with metallic luster of (Sr3N2/3–x)E (E = Sn, Pb) and (Sr3N)Sb were grown in lithium flux from strontium nitride, Sr2N, and tin, lead, or antimony, respectively. Nitrogen deficiency in the tin and the lead compound is a result of the higher ionic charge of the tetrelide ions E4– as compared to the antimonide ion Sb3–. In contrast to microcrystalline samples from solid state sinter reactions obtained earlier, the flux synthesis induces nitrogen order in the nitrogen deficient tetrelides. The antimony compound crystallizes as inverse cubic perovskite [a = 517.22(5) pm, Z = 1, space group Pm3 m, no. 221] with fully occupied nitrogen site, whereas the nitrogen deficient tin and lead compounds exhibit partially ordered arrangements and a certain phase width in respect to nitrogen contents. For the tetrelides, the nitrogen order leads to a cubic 2 × 2 × 2 superstructure [E = Sn: a = 1045.64(8) pm for x = 0, a = 1047.08(7) pm for x = 0.08; and E = Pb: a = 1050.7(1) pm for x = 0, space group Fm3 m, no. 225] as derived from single‐crystal X‐ray diffraction data. The metallic tetrelides show diamagnetic behavior, which is consistent with electronic structure calculations.  相似文献   

13.
MXenes, 2D compounds generated from layered bulk materials, have attracted significant attention in energy‐related fields. However, most syntheses involve HF, which is highly corrosive and harmful to lithium‐ion battery and supercapacitor performance. Here an alkali‐assisted hydrothermal method is used to prepare a MXene Ti3C2Tx (T=OH, O). This route is inspired from a Bayer process used in bauxite refining. The process is free of fluorine and yields multilayer Ti3C2Tx with ca. 92 wt % in purity (using 27.5 m NaOH, 270 °C). Without the F terminations, the resulting Ti3C2Tx film electrode (ca. 52 μm in thickness, ca. 1.63 g cm−3 in density) is 314 F g−1 via gravimetric capacitance at 2 mV s−1 in 1 m H2SO4. This surpasses (by ca. 214 %) that of the multilayer Ti3C2Tx prepared via HF treatments. This fluorine‐free method also provides an alkali‐etching strategy for exploring new MXenes for which the interlayer amphoteric/acidic atoms from the pristine MAX phase must be removed.  相似文献   

14.
MXenes, 2D compounds generated from layered bulk materials, have attracted significant attention in energy‐related fields. However, most syntheses involve HF, which is highly corrosive and harmful to lithium‐ion battery and supercapacitor performance. Here an alkali‐assisted hydrothermal method is used to prepare a MXene Ti3C2Tx (T=OH, O). This route is inspired from a Bayer process used in bauxite refining. The process is free of fluorine and yields multilayer Ti3C2Tx with ca. 92 wt % in purity (using 27.5 m NaOH, 270 °C). Without the F terminations, the resulting Ti3C2Tx film electrode (ca. 52 μm in thickness, ca. 1.63 g cm?3 in density) is 314 F g?1 via gravimetric capacitance at 2 mV s?1 in 1 m H2SO4. This surpasses (by ca. 214 %) that of the multilayer Ti3C2Tx prepared via HF treatments. This fluorine‐free method also provides an alkali‐etching strategy for exploring new MXenes for which the interlayer amphoteric/acidic atoms from the pristine MAX phase must be removed.  相似文献   

15.
Ternary rare earth platinum aluminides were prepared by arc‐melting of the elemental components followed by annealing in a high‐frequency furnace. Their crystal structure was determined for the yttrium compound from four‐circle X‐ray diffractometer data. It has hexagonal symmetry with a = 428.1(1) pm, c = 1638.3(3) pm, space group P63/mmc, and was refined to a conventional residual of R = 0.018 for 325 F values and 19 variable parameters. Of the five crystallographic positions, the yttrium position and one of the three aluminum positions show partial occupancies corresponding to the composition Y1.357(3)Pt4Al9.99(2) with the Pearson symbol hP20 — 4.65. These partially occupied sites are that close to each other that at best only one can be fully occupied. A model for an ordered distribution of occupied and unoccupied Y and Al sites requires a √3 larger a axis with the Pearson symbol hP20 — 4.67 for the subcell, very close to the experimental result. Corresponding superstructure reflections could be observed on an image‐plate single‐crystal diffractometer only in the form of diffuse streaks. The compound has the ideal composition Y2Pt6Al15 with Z = 2 for the superstructure. This corresponds to the formula Y1.33Pt4Al10 with Z = 1 for the subcell. The compounds A1.33Pt4Al10 with A = Gd, Tb, Dy, Ho, Er, Tm were found to be isotypic with that of the yttrium compound. This structure is closely related to or isotypic with, respectively, those of Yb2Fe4Si9, Sc1.2Fe4Si9.8, Ce1.2Pt4Ga9.8, Ce2Pt6Ga15, Tb0.67Ni2Ga5—xSix, RE0.67Ni2Ga5—xGex> (with RE = Y, Sm, Ho), and Gd0.67Pt2Al5, reported in earlier investigations. The new compound Zr1.00(1)Pt4Al10.22(3) has nearly the same hexagonal structure with a = 426.1(1) pm and c = 1622.8(3) pm. It was refined from four‐circle diffractometer data to a residual of R = 0.021 for 288 structure factors and 19 variable parameters.  相似文献   

16.
YbSi2 and the derivatives YbTxSi2–x (T = Cr, Fe, Co) crystallizing in the α‐ThSi2 structure type were obtained as single crystals from reactions run in liquid indium. All silicides were investigated by single‐crystal X‐ray diffraction, I41/amd space group and the lattice constants are: a = 3.9868(6) Å and c = 13.541(3) Å for YbSi2, a = 4.0123(6) Å and c = 13.542(3) Å for YbCr0.27Si1.73, a = 4.0142(6) Å and c = 13.830(3) Å for YbCr0.71Si1.29, a = 4.0080(6) Å and c = 13.751(3) Å for YbFe0.34Si1.66, and a = 4.0036(6) Å, c = 13.707(3) Å for YbCo0.21Si1.79. YbSi2 and YbTxSi2–x compounds are polar intermetallics with three‐dimensional Si and M (T+Si) polyanion sub‐networks, respectively, filled with ytterbium atoms. The degree of substitution of transition metal at the silicon site is signficant and leads to changes in the average bond lengths and bond angles substantially.  相似文献   

17.
The alkaline earth metal compounds AETMg2 and AETCd2 (AE = Ca, Sr; T = Pd, Ag, Pt, Au) were synthesized by induction‐melting (or in muffle furnaces) of the elements in sealed niobium ampoules. The new phases were characterized by powder X‐ray diffraction. The structures of SrPdMg2 and SrPdCd2 were investigated by X‐ray diffraction on single crystals: MgCuAl2 type, Cmcm, a = 436.42(4), b = 1130.1(1), c = 820.54(7) pm, wR2 = 0.0115, 511 F2 values for SrPdMg2 and a = 443.5(2), b = 1063.0(2), c = 810.2(2) pm, wR2 = 0.0296, 386 F2 values for SrPdCd2 with 16 variables for each refinement. The magnesium and cadmium atoms build up [TMg2] and [TCd2] polyanionic networks, which leave cavities for the calcium and strontium atoms. The bonding variations within the polyanions, which are mainly influenced by the length of the b axis are discussed. Ab initio calculations of electronic structure, charge densities, and chemical bonding, characterize SrPdMg2 with a larger cohesive energy than SrPdCd2. This is illustrated by larger bonding Pd–Mg interactions, opposite to compensating Pd–Cd between bonding and antibonding states.  相似文献   

18.
Na5[CuO2](OH)2 has been obtained as orange single crystals from mixtures of NaOH, Na2O and Cu2O in sealed Ag containers. The crystal structure has been refined from X‐ray diffraction data (IPDS data, Pnma, Z = 4, a = 607.4(1) pm, b = 891.2(1) pm, c = 1201.0(2) pm, R1 = 0.03). The characteristic unit is the bent [CuO2]3– complex (∠(O–Cu–O) = 170°). The reactivity of Na5[CuO2](OH)2 has been studied by DSC and in situ X‐ray diffraction techniques. IR spectroscopy has been used for further characterization. The Madelung Part of the Lattice Energy (MAPLE) has been calculated as well.  相似文献   

19.
Er5(BO3)2F9 was synthesised under conditions of 3 GPa and 800 °C in a Walker‐type multianvil apparatus. The crystal structure was determined on the basis of single‐crystal X‐ray diffraction data, collected at room temperature. Er5(BO3)2F9 is isotypic to the recently synthesised Yb5(BO3)2F9 and crystallises in C2/c with the lattice parameters a = 2031.2(4) pm, b = 609.5(2) pm, c = 824.6(2) pm, and β = 100.29(3)°. The physical properties of RE5(BO3)2F9 (RE = Er, Yb) including high temperature behaviour and single crystal IR‐ / Raman spectroscopy were investigated.  相似文献   

20.
The ternary rare‐earth germanium antimonides RE12Ge7?xSb21 (RE=La–Pr; x=0.4–0.5) are synthesized by direct reactions of the elements. Single‐crystal X‐ray diffraction studies indicate that they adopt a new structure type (space group Immm, Z=2, a=4.3165(4)–4.2578(2) Å, b=15.2050(12)–14.9777(7) Å, c=34.443(3)–33.9376(16) Å in the progression from RE=La to Pr), integrating complex features found in RE6Ge5?xSb11+x and RE12Ga4Sb23. A three‐dimensional polyanionic framework, consisting of Ge pairs and Sb ribbons, outlines large channels occupied by columns of face‐sharing RE6 trigonal prisms. These trigonal prisms are centered by additional Ge and Sb atoms to form GeSb3 trigonal‐planar units. A bonding analysis attempted through a Zintl–Klemm approach suggests that full electron transfer from the RE atoms to the anionic substructure cannot be assumed. This is confirmed by band‐structure calculations, which also reveal the importance of Ge? Sb and Sb? Sb bonding. Magnetic measurements on Ce12Ge6.5Sb21 indicate antiferromagnetic coupling but no long‐range ordering down to 2 K.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号