首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Anionic Fragments of h‐BN in the Structure La6B4N10 The compound La6B4N10 was synthesized by solid state reactions at high temperatures. Crystals obtained for La6B4N10 were systematically twinned and showed orthorhombic symmetry. An X‐ray crystal structure refinement on a needle shaped pseudo‐merohedral twin yielded the monoclinic space group P21/c, Z = 2, lattice parameters a = 971.89(6) pm, b = 1479.41(9) pm, c = 762.32(4) pm, β = 90.005(9)° and converged at R1 = 0.0352, wR2 = 0.0555 for all independent reflections. The structure of La6(B3N6)(BN3)N contains cyclic B3N6 ions with three exocyclic N atoms, carbonate ion like BN3 units and nitride ions that can be considered as fragments or products of a nitration reaction of hexagonal boron nitride.  相似文献   

2.
La4N2S3: A New Nitride Sulfide of Lanthanum with Unprecedented Crystal Structure The oxidation of lanthanum powder with sulfur and cesium azide (CsN3) in the presence of lanthanum tribromide (LaBr3) yields lanthanum nitride sulfide with the composition La4N2S3 when appropriate molar ratios of the reactants are used. Additional cesium bromide (CsBr) as a flux secures fast reactions (7 d) at 900 °C in evacuated silica tubes as well as the formation of almost black single crystals. The orthorhombic crystal structure (Pnnm, Z = 2) was determined from single crystal X‐ray diffraction data (a = 641.98(4), b = 1581.42(9), c = 409.87(3) pm). Two crystallographically different La3+ cations are present, La1 resides in sixfold coordination of two N3? and four S2? anions forming a trigonal prism and La2 is coordinated by two N3? and five S2? in the shape of a monocapped trigonal prism. However, the main feature of the crystal structure comprises N3?‐centred (La3+)4 tetrahedra which arrange as pairs [N2La6]12+ of edge‐shared [NLa4]9+ units and which are further connected via four vertices to form double chains . They get bundled along [001] like a hexagonal rod packing and are held together by two crystallographically different S2? anions. Further motifs for the connectivity of [NM4]9+ tetrahedra in crystal structures of nitride chalcogenides and halides of the rare‐earth elements (M = Sc, Y, La; Ce – Lu) with ratios of N : M = 1 : 2 are presented and discussed for comparison.  相似文献   

3.
(OLi2Ca4)3[ReN4]4, a Nitridorhenate(VI) Oxide Black single crystals of (OLi2Ca4)3[ReN4]4 were prepared from the elements (molar ratio Li : Ca : Re = 6 : 1 : 1) by reaction with molecular nitrogen at 900 °C; oxygen content results from a leak in the gas supply. The nitridorhenate(VI)‐oxide is an isotype of (OLi2Ca4)3[MN4]4 (M = MoVI, WVI). These compounds are obtained under similar reaction conditions in the presence of small amounts of oxygen containing impurities (Li‐/Ca‐hydroxides). The crystal structure of (OLi2Ca4)3[ReN4]4 was determined by single crystal methods (cubic; I43d (# 220); a = 1315.88(9) pm; Z = 4) and can be derived from the Th3P4 type structure by hierarchical replacements: Th ≙ (OLi2Ca4)8+‐tetragonal bipyramids and P ≙ [ReVIN4]6–‐tetrahedra.  相似文献   

4.
La3OCl[AsO3]2: A Lanthanum Oxide Chloride Oxoarsenate(III) with a “Lone‐Pair” Channel Structure La3OCl[AsO3]2 was prepared by the solid‐state reaction between La2O3 and As2O3 using LaCl3 and CsCl as fluxing agents in evacuated silica ampoules at 850 °C. The colourless crystals with pillar‐shaped habit crystallize tetragonally (a = 1299.96(9), c = 558.37(5) pm, c/a = 0.430) in the space group P42/mnm (no. 136) with four formula units per unit cell. The crystal structure contains two crystallographically different La3+ cations. (La1)3+ is coordinated by six oxygen atoms and two chloride anions in the shape of a bicapped trigonal prism (CN = 8), whereas (La2)3+ carries eight oxygen atoms and one Cl? anion arranged in the shape of tricapped trigonal prism (CN = 9). The isolated pyramidal [AsO3]3? anions (d(As–O) = 175–179 pm) consist of three oxygen atoms (O2 and two O3), which surround the As3+ cations together with the free, non‐binding electron pair (lone pair) Ψ1‐tetrahedrally (?(O–As–O) = 95°, 3×). One of the three crystallographically independent oxygen atoms (O1), however, is exclusively coordinated by four (La2)3+ cations in the shape of a real tetrahedron (d(O–La) = 236 pm, 4×). These [(O1)(La2)4]10+ tetrahedra form endless chains in the direction of the c axis through trans‐edge condensation. Empty channels, constituted by the lonepair electrons of the Cl? anions and the As3+ cations in the Ψ1‐tetrahedral oxoarsenate(III) anions [AsO3]3?, run parallel to [001] as well.  相似文献   

5.
On the H‐ and A‐Type Structure of La2[Si2O7] By thermal decomposition of La3F3[Si3O9] at 700 °C in a CsCl flux single crystals of a new form of La2[Si2O7] have been found which is called H type (triclinic, P1; a = 681.13(4), b = 686.64(4), c = 1250.23(8) pm, α = 82.529(7), β = 88.027(6), γ = 88.959(6)°; Vm = 87.223(9) cm3/mol, Dx = 5.113(8) g/cm3, Z = 4) continuing Felsche's nomenclature. It crystallizes isotypically to the triclinic K2[Cr2O7] in a structure closely related to that of A–La2[Si2O7] (tetragonal, P41; a = 683.83(7), c = 2473.6(4) pm; Vm = 87.072(9) cm3/mol, Dx = 5.122(8) g/cm3, Z = 8). For comparison, the latter has been refined from single crystal data, too. Both the structures can be described as sequence of layers of each of two crystallographically different [Si2O7]6– anions always built up of two corner‐linked [SiO4] tetrahedra in eclipsed conformation with non‐linear Si–O–Si bridges (∢(Si–O–Si) = 128–132°) piled up in [001] direction and aligned almost parallel to the c axis. They differ only in layer sequence: Whereas the double tetrahedra of the disilicate units are tilted alternating to the left and in view direction ([010]; stacking sequence: AB) in H–La2[Si2O7], after layer B there follow due to the 41 screw axis layers with anions tilted to the right and tilted against view direction ([010]; stacking sequence: ABA′B′) in A–La2[Si2O7]. The extremely irregular coordination polyhedra around each of the four crystallographically independent La3+ cations in both forms (H and A type) consist of eight to ten oxygen atoms in spacing intervals of 239 to 330 pm. The possibility of more or less ordered intermediate forms will be discussed.  相似文献   

6.
7.
The title compound [La(phen)2(H2O)2(NO3)2](NO3) · 2(phen)(H2O) with phen = 1,10‐phenanthroline was prepared by the stoichiometric reaction of La(NO3)3 · 6 H2O and 1,10‐phenanthroline monohydrate in a CH3OH–H2O solution. The crystal structure (triclinic, P 1 (no. 2), a = 11.052(2), b = 13.420(2), c = 16.300(2) Å, α = 78.12(1)°, β = 88.77(1)°, γ = 83.03(1)°, Z = 2, R = 0.0488, wR2 = 0.1028) consists of [La(phen)2(H2O)2(NO3)2]2+ complex cations, NO3 anions, phen and H2O molecules. The La atom is 10‐fold coordinated by four N atoms of two bidentate chelating phen ligands and six O atoms of two H2O molecules and two bidentate chelating NO32– ligands with d(La–O) = 2.522–2.640 Å and d(La–N) = 2.689–2.738 Å. The intermolecular π‐π stacking interactions play an essential role in the formation of two different 2 D layers parallel to (001), which are formed by complex cations and uncoordinating phen molecules, respectively. The uncoordinated NO3 anions and H2O molecules are sandwiched between the cationic and phen layers.  相似文献   

8.
La4B14O27: A Lanthanum ultra‐Oxoborate with a Framework Structure Single crystals of La4B14O27 could be synthesized by the reaction of La2O3, LaCl3 and B2O3 with an access of CsCl as fluxing agent in gastightly sealed platinum ampoules within twenty days at 710 °C and appear as colourless, transparent and waterresistant platelets. The new lanthanum oxoborate La4B14O27 (monoclinic, C2/c; a = 1120.84(9), b = 641.98(6), c = 2537.2(2) pm, β = 100.125(8)°; Z = 4) is built of a three‐dimensional boron‐oxygen framework containing seven crystallographically different boron atoms. Four of these B3+ cations are surrounded by four O2? anions tetrahedrally, whereas the other three have only three oxygen neighbours with nearly plane triangular coordination figures. Three of the [BO4]5? tetrahedra form [B3O9]9? rings by cyclic vertex‐condensation, which are further linked via [BO3]3? units to infinite layers. Two of these layers connect via one [B2O7]8? unit of two corner‐shared [BO4]5? tetrahedra to double layers, which themselves build up a three‐dimensional framework together with chains consisting of two [BO4]5? tetrahedra and one [BO3]3? triangle. One of the two crystallographically independent La3+ cations (La1) is surrounded by ten O2? anions and resides within the oxoborate double layers. (La2)3+ shows a (8+2)‐fold coordination of O2? anions and occupies channels along the [110] direction.  相似文献   

9.
TlCu5O(VO4)3 with KCu5O(VO4)3 Structure – a Thallium Copper(II) Oxide Vanadate as an Oxidation Product of a Tl/Cu/V Alloy Brown‐black crystals of the new oxide vanadate TlCu5O(VO4)3 (triclinic, P1, a = 610.4(1) pm, b = 828.9(1) pm, c = 1075.3(1) pm, α = 97.70(1)°, β = 92.25(1)°, γ = 90.28(1)°, Z = 2) were obtained as a byproduct during the reaction of a Tl/Cu/V alloy with oxygen. The compound is isotypic with KCu5O(VO4)3. All the crystals investigated were twins by non‐merohedry with [100] as the twin axis. The structure contains ladder shaped [Cu10O26]‐ribbons composed of edge‐ and corner‐sharing [CuO5]‐polyhedra (tetragonal pyramids and trigonal bipyramids) and linked by vanadate groups. The thallium ions fill channels running along the a axis. No stereochemical activity of the thallium(I)‐lone pair is observed.  相似文献   

10.
Anhydrous Selenites of Lanthanum: Syntheses and Crystal Structures of La2(SeO3)3 and LaFSeO3 Colorless single crystals of La2(SeO3)3 were obtained via the decomposition of La2(SeO4)3 in the presence of NaCl in sealed gold ampoules. The compound crystallizes in the orthorhombic system (Pnma, Z = 4, a = 846.7(1), b = 1428.6(1), c = 710.3(2) pm, Rall = 0.0223) and contains La3+ in tenfold coordination of oxygen atoms which belong to seven SeO32– groups. Hence, three of the latter act as bidentate ligands. The reaction of LiF with La2(SeO4)3 in sealed gold ampoules yielded colorless single crystals of LaFSeO3 (monoclinic, P21/c, Z = 12, a = 1819.8(3), b = 715.75(8), c = 846.4(1) pm, β = 96.89(2)°, Rall = 0.0352). The crystal structure contains three crystallographically different La3+ ions. La1 is surrounded by six oxygen atoms from five SeO32– groups and four fluoride ions, La2 is coordinated by two bidentate SeO32– ions and seven fluoride ligands. La3 is surrounded by oxygen atoms only with the coordination number and polyhedron being almost the same as found for La3+ in La2(SeO3)3. Furthermore, the crystal structures of both compounds are strongly influenced by the lone pairs of the SeO32– groups.  相似文献   

11.
I‐Type La2Si2O7: According to La6[Si4O13][SiO4]2 not a Real Lanthanum Disilicate In attempts to synthesize lanthanum telluride silicate La2Te[SiO4] (from La, TeO2, SiO2 and CsCl, molar ratio: 1 : 1: 1 : 20, 950 °C, 7 d) or fluoride‐rich lanthanum fluoride silicates (from LaF3, La2O3, SiO2 and CsCl, molar ratio: 5 : 2 : 3 : 17, 700 °C, 7 d) in evacuated silica tubes, colourless lath‐shaped single crystals of hitherto unknown I‐type La2Si2O7 (monoclinic, P21/c; a = 726.14(5), b = 2353.2(2), c = 1013.11(8) pm, β = 90.159(7)°) were found in the CsCl‐flux melts. Nevertheless, this new modification of lanthanum disilicate does not contain any discrete disilicate groups [Si2O7]6‐ but formally three of them are dismutated into one catena‐tetrasilicate ([Si4O13]10‐ unit of four vertex‐linked [SiO4]4‐ tetrahedra) and two ortho‐silicate anions (isolated [SiO4]4‐ tetrahedra) according to La6[Si4O13][SiO4]2. This compound can be described as built up of alternating layers of these [SiO4]4‐ and the horseshoe‐shaped [Si4O13]10‐ anions along [010]. Between and within the layers the high‐coordinated La 3+ cations (CN = 9 ‐ 11) are localized. The close structural relationship to the borosilicates M3[BSiO6][SiO4](M = Ce ‐ Eu) is discussed and structural comparisons with other catena‐tetrasilicates are presented.  相似文献   

12.
The tris(2,4‐dimethylpentadienyl) complexes [Ln(η5‐Me2C5H5)3] (Ln = Nd, La, Y) are obtained analytically pure by reaction of the tribromides LnBr3·nTHF with the potassium compound K(Me2C5H5)(thf)n in THF in good yields. The structural characterization is carried out by X‐ray crystal structure analysis and NMR‐spectroscopically. The tris complexes can be transformed into the dimeric bis(2,4‐dimethylpentadienyl) complexes [Ln2(η5‐Me2C5H5)4X2] (Ln, X: Nd, Cl, Br, I; La, Br, I; Y, Br) by reaction with the trihalides THF solvates in the molar ratio 2:1 in toluene. Structure and bonding conditions are determined for selected compounds by X‐ray crystal structure analysis and NMR‐spectroscopically in general. The dimer‐monomer equilibrium existing in solution was investigated NMR‐spectroscopically in dependence of the donor strength of the solvent and could be established also by preparation of the corresponding monomer neutral ligand complexes [Ln(η5‐Me2C5H5)2X(L)] (Ln, X, L: Nd, Br, py; La, Cl, thf; Br, py; Y, Br, thf). Finally the possibilities for preparation of mono(2,4‐dimethylpentadienyl)lanthanoid(III)‐dibromid complexes are shown and the hexameric structure of the lanthanum complex [La6(η5‐Me2C5H5)6Br12(thf)4] is proved by X‐ray crystal structure analysis.  相似文献   

13.
14.
15.
The Lanthanum Dodecahydro‐closo‐Dodecaborate Hydrate [La(H2O)9]2[B12H12]3·15 H2O and its Oxonium‐Chloride Derivative [La(H2O)9](H3O)Cl2[B12H12]·H2O By neutralization of an aqueous solution of the free acid (H3O)2[B12H12] with basic La2O3 and after isothermic evaporation colourless, face‐rich single crystals of a water‐rich lanthanum(III) dodecahydro‐closo‐dodecaborate hydrate [La(H2O)9]2[B12H12]3·15 H2O are isolated. The compound crystallizes in the trigonal system with the centrosymmetric space group (a = 1189.95(2), c = 7313.27(9) pm, c/a = 6.146; Z = 6; measuring temperature: 100 K). The crystal structure of [La(H2O)9]2[B12H12]3·15 H2O can be characterized by two of each other independent, one into another posed motives of lattice components. The [B12H12]2− anions (d(B–B) = 177–179 pm; d(B–H) = 105–116 pm) are arranged according to the samarium structure, while the La3+ cations are arranged according to the copper structure. The lanthanum cations are coordinated in first sphere by nine oxygen atoms from water molecules in form of a threecapped trigonal prism (d(La–O) = 251–262 pm). A coordinative influence of the [B12H12]2− anions on La3+ has not been determined. Since “zeolitic” water of hydratation is also present, obviously the classical H–Oδ–···H–O‐hydrogen bonds play a significant role in the stabilization of the crystal structure. During the conversion of an aqueous solution of (H3O)2[B12H12] with lanthanum trichloride an anion‐mixed salt with the composition [La(H2O)9](H3O)Cl2[B12H12]·H2O is obtained. The compound crystallizes in the hexagonal system with the non‐centrosymmetric space group (a = 808.84(3), c = 2064.51(8) pm, c/a = 2.552; Z = 2; measuring temperature: 293 K). The crystal structure can be characterized as a layer‐like structure, in which [B12H12]2− anions and H3O+ cations alternate with layers of [La(H2O)9]3+ cations (d(La–O) = 252–260 pm) and Cl anions along [001]. The [B12H12]2− (d(B–B) = 176–179 pm; d(B–H) = 104–113 pm) and Cl anions exhibit no coordinative influence on La3+. Hydrogen bonds are formed between the H3O+ cations and [B12H12]2− anions, also between the water molecules of [La(H2O)9]3+ and Cl anions, which contribute to the stabilization of the crystal structure.  相似文献   

16.
SnAl2OCl6, a Quaternary Oxide‐Chloride with Edge‐Sharing [Al4O2Cl10] Tetramers and [(SnCl2/2Cl5)2] Dimers Single crystals of SnAl2OCl6 were obtained from the educts SnCl2 and AlCl3 (obviously containing an oxidic impurity) in silica ampoules with the aid of the Bridgman technique. According to single‐crystal structure analysis, SnAl2OCl6 crystallizes with the monoclinic system (P21/n, Z = 4, a = 942.3(2), b = 1225.8(2), c = 948.4(3) pm, β = 96.42(2)°). Characteristic structural features are centrosymmetric tetramers [Al4O2Cl10] and [(SnCl2/2Cl5)2] dimers which are connected via common edges, finally building up a three‐dimensional structure.  相似文献   

17.
Framework Compounds with Mobile LaIII Cations: Syntheses, Crystal Structures and Structural Dynamics of the Lanthanum(III) Iron(II) Sulfide Halides La53Fe12S90X3 (X = Cl, Br, I) Black crystals of La53Fe12S90X3 (X = Cl, Br, I) were synthesized from La2S3 and FeS in a reactive LaX3 flux at 1320 K. The structures were determined by single‐crystal X‐ray diffraction. The compounds are isostructural, crystallizing in the rhombohedral space group with Z = 1 (La53Fe12S90Cl3: a = 14.0154(7), c = 21.888(1) Å, V = 3723.5(3) Å3; La53Fe12S90Br3: a = 14.0048(9), c = 22.040(2) Å, V = 3743.6(4) Å3; La53Fe12S90I3: a = 13.9805(8), c = 22.108(2) Å, V = 3742.2(4) Å3). The structure adopted is a stuffed variant of the La52Fe12S90 structure type. [FeII2S9] dimers of face‐sharing octahedra are linked by face‐ and vertex‐sharing bi‐ or tri‐capped [LaIIIS6+n] trigonal prisms, forming a three‐dimensional framework containing cuboctahedral cavities of two sizes. The larger cavities, which remain empty in the structure of La52Fe12S90, are filled by halide ions in La53Fe12S90X3. The smaller cavities accommodate numerous sites for disordered lanthanum cations, modelling a network of diffusion pathways through the structure. An analogous picture is obtained from the calculation of the periodic nodal surface (PNS): The PNS separates a labyrinth containing the framework atoms from a labyrinth containing the mobile lanthanum cations. Molecular dynamic simulations confirm a strong coupling between the motions of the mobile lanthanum ions and the neighbouring sulfide ions.  相似文献   

18.
A new organic templated lanthanum sulfate [C4N3H16][La(SO4)3(H2O)] ( 1 ) has been solvothermally synthesized by using n‐butanol as solvent. The colorless block crystals were characterized by IR, TGA, ICP, and XRD. The structure was determined by single‐crystal X‐ray diffraction: Monoclinic, P21/c, a = 10.8878(19), b = 15.478(3), c = 9.9639(18) Å, β = 114.062(2)°, V=1533.2(5) Å3, Z = 4]. Crystal structure analysis shows that the one dimensional chain of 1 consists of the LaO9 polyhedra and the sulfate groups. Coordination water molecules link adjacent chains by using hydrogen bonds to generate 2D layers, whereas the organic amines are inserted between the layers. The formation of 1 demonstrates that solvents play an important role during the synthesis.  相似文献   

19.
The title compound Ca3[BN2]I3 was obtained from reactions of mixtures of the starting materials Ca3[BN2]2 and CaI2 in a 1:4 ratio in sealed Nb tubes at 1223 K. The crystal structure was solved from powder synchrotron diffraction data. Ca3[BN2]I3 is the first example of a halide‐rich nitridoborate crystallizing in the rhombohedral space group R32 [no. 155, Pearson code: hR96; Z = 12; a = 16.70491(2) Å, c = 12.41024(2) Å]. The crystal structure is built up by two interpenetrating networks of condensed edge‐sharing [BN2]@Ca6 and [□]@I6 trigonal antiprisms (□ = void). In Ca3[BN2]I3 two crystallograhically distinct [BN2]3– anions are present with d(B1–N) = 1.393(2) Å and d(B2–N) = 1.369(9) Å. Their bond angles are practically linear, varying only slightly: N–B1–N = 179(1)° and N–B2–N = 180°. Vibrational spectra were interpreted based on the Dh symmetry of the discrete linear [N–B–N]3– moieties, considering the site symmetry reduction and the presence of two distinct [BN2]3– groups.  相似文献   

20.
[(PhSnS3)2(CuPPhMe2)6], a Hexanuclear Copper(I) Complex with PhSnS3 Ligands Na3[PhSnS3] which is available by the cleavage of Ph4Sn4S6 with Na2S in aqueous THF reacts with the copper(I) complex [(PhPMe2)bipyCuCl] to give the hexanuclear copper(I) compound [(PhSnS3)2(CuPPhMe2)6] ( 1 ). 1 crystallizes in the space group P21/n with a = 1343.4(3) pm, b = 1134.5(2) pm, c = 2353.0(7) pm, β = 98.04(3)° (at 220 K). The molecular structure of 1 consists of six Cu(PPhMe2) groups which are bridged by two PhSnS3 units. The copper atoms are coordinated by two sulfur atoms and a terminal phosphine ligand in nearly planar arrangement with Cu‐S distances ranging between 223.6(2) and 232.9(2) pm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号