首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Ladder Structure of LiNb6Cl19 LiNb6Cl19 was obtained from a solid state reaction of Nb powder, NbCl5, and Li2C2 at 530 °C. The structure was refined by single‐crystal X‐ray diffraction (space group Pmma (No. 51), Z = 2, a = 2814.6(1) pm, b = 687.35(5) pm, c = 641.39(3) pm). It contains edge and face bridging [NbCl6] octahedra forming the motif of a ladder. The parallel alignment of ladders yields a one‐dimensional structure, with lithium ions occupying voids. Each ladder combines characteristic fragments from the niobium chloride structures NbCl4, A3Nb2Cl9 (A = Rb, Cs), and Nb3Cl8. The arrangement of niobium atoms in LiNb6Cl19 appears to be similar with trigonal niobium clusters obtained in the structure of Nb3Cl8. The electronic structures of niobium clusters in Nb3Cl8 and LiNb6Cl19 are compared with each other.  相似文献   

2.
The Crystal Structure of the Low‐Temperature Form of Ag5Te2Cl Crystals of trimorphic Ag5Te2Cl were obtained by solid state reaction from a stoichiometric mixture of silver, tellurium, and tellurium(IV)chloride (480 °C, 4–10 days). The crystals were cooled down to –80 °C without decomposition and data collection was carried out at this temperature. The low temperature form of the title compound crystallizes in space group P21/c with lattice constants of a = 19.359(1) Å, b = 7.713(1) Å, c = 19.533(1) Å, β = 90.6°(1), V = 2916.4(1), and Z = 16. The refinement converged to residual values of R1 = 0.0381 and wR2 = 0.0847, respectively. Te and Cl atoms form empty, distorted octahedra interconnected by common vertices to give a 3D‐network. Ag atoms form clusters with Ag–Ag distances between 2.83 Å and 3.10 Å.  相似文献   

3.
Structure and Electrochemical Study of Nb3Cl8 The compound Nb3Cl8 was synthesized from NbCl5 and niobium metal in a sealed quartz ampoule at 700 °C. Single crystals, obtained from LiCl melt were used for X‐ray structure determination (space group P 3 m1, Z = 2, lattice parameters a = b = 672.95(7) pm, c = 1223.2(2) pm (at 100 K), R1 = 0.029, wR2 = 0.064 for all independent reflections). Electrical resistivity measurements are reported. Electrochemical intercalation of lithium into the structure of Nb3Cl8 was studied.  相似文献   

4.
The Layer Structure of Cyameluric Chloride C6N7Cl3 A solid state reaction of cyanuric chloride (trichloro‐s‐triazine C3N3Cl3) with sodium dicyanamide (NaN(CN)2) yielded some yellow, plate‐like crystals of cyameluric chloride (trichloro‐s‐heptazine C6N7Cl3). The crystal structure was determined by single crystal X‐ray diffraction at 220 K and was solved in the monoclinic space group C 2/c (no. 15) with Z = 24, a = 2319.4(4) pm, b = 1348.8(1) pm, c = 2063.4(3) pm, β = 118.38(2)° and V = 5.680(1) nm3. In the structure, the molecules of C6N7Cl3 are forming layers parallel to the ab‐plane, which are separated from each other by a gap of approximately 300 pm. In each of these layers, the molecules seem to be arranged around pseudo‐threefold axes, showing an almost trigonal structure pattern.  相似文献   

5.
Suitable single crystals for X‐ray analysis of the recently published azido beryllate (Ph4P)2[Be4Cl4(μ‐N3)6] ( 1 ) [1] were obtained by a modified synthetic route, and the crystal structure of 1 was determined. The compound crystallizes isotypically with the corresponding bromo derivative [1] in the space group C2/c with 12 formula units per unit cell. Lattice dimensions at 193 K: a = 4125.5(1), b = 2001.7(1), c = 2050.4(1) pm, β = 101.05 (1)°, R1 = 0.0359. The structure contains adamantanlike dianions [Be4Cl4(μ‐N3)6]2? with a Be4N6 core forming by the bridging function of the α‐nitrogen atoms of the azido groups.  相似文献   

6.
Crystal structure of AgIIF[AgIIIF4] For the first time dark brown single crystals of mixedvalent AgF[AgF4] were isolated under solvothermal conditions out of anhydrous HF/F2. The compound crystallizes in a new type of structure, triclinic with a = 499.9(2) pm, b = 1108.7(5) pm, c = 735.7(3) pm, α = 90.05(3)°, β = 106.54(4)°, γ = 90.18(4)°, spcgr. P1¯ — Ci1 (No. 2) and Z = 4.  相似文献   

7.
The reaction of platinum(II) chloride with 1,2,4‐trichlorobenzene gives the novel platinum complex Pt6Cl12·(1,2,4‐C6H3Cl3). It is the first example of an cocrystallization product of platinum(II) chloride and organic molecules whose crystal structure has been established.  相似文献   

8.
Synthesis, Crystal Structure and Spectroscopic Characterization of [Au12(PPh)2(P2Ph2)2(dppm)4Cl2]Cl2 The reaction of [(AuCl)2dppm] (dppm = Ph2PCH2PPh2) with P(Ph)(SiMe3)2 in CHCl3 results in the formation of [Au12(PPh)2(P2Ph2)2(dppm)4Cl2]Cl2 ( 1 ), the crystal structure of which was determined by single crystal X‐ray analysis (space group P21/c, a = 1425.3(3) pm, b = 2803.7(6) pm, c = 2255.0(5) pm, β = 95.00(3)°, V = 8977(3)·106 pm3, Z = 2). The dication in 1 consists of two Au6P3 units built by highly distorted Au3P and Au2P2 heterotetrahedra, connected via four bidentate phosphine ligands. Additionally, the compound was characterized by IR‐, UV‐ and NMR spectroscopy. The 31P{1H} NMR spectrum is discussed in detail.  相似文献   

9.
RbVSe2 has been synthesized at 773 K through the reaction of V and Se with a Rb2Se3 reactive flux. The compound crystallizes in the orthorhombic space group D2h24-Fddd with 16 formula units in a cell of dimensions , , and at . The structure possesses infinite one-dimensional chains of edge-sharing VSe4 tetrahedra separated from the Rb+ ions. These chains distort slightly to chains. The V-V distance within these chains is 2.8362(4) Å. First-principles total energy calculations indicate that a non-magnetic configuration for the V3+ cations is the most stable.  相似文献   

10.
Synthesis, Crystal Structures, and Spectroscopic Characterization of NiP4O11 and CaNiP2O7 From melts single crystals of NiP4O11 and CaNiP2O7 have been grown. These allowed refinement of the crystal structures (NiP4O11: C1¯, Z = 8, a = 12, 753(4)Å, b = 12.957(3)Å, c = 10.581(4)Å, α = 89.42(2)°, β = 116.96(2)°, γ = 90.20(2)°, R1 = 0.027, wR2 = 0.072 for 3058 Io > 2σ (Io), 3291 independent reflections, 290 parameters; CaNiP2O7: P1¯, Z = 2, a = 6.433(3)Å, b = 6.536(4)Å, c = 6.515(2)Å, α = 66.4(2)°, β = 87.5(2)°, γ = 82.7(2)°, R1 = 0.026, wR2 = 0.062 for 1624 Io > 2σ (Io), 2189 independent reflections, 101 parameter) and measurement of polarized electronic absorption spectra in the uv/vis/nir region (6000—32000 cm—1). NiP4O11 is isotypic to the series of ultraphosphates MP4O11 (M = Mn, Fe, Co, Cu, Zn, Cd) that exhibit a two‐dimensional network formed from ten‐membered phosphate rings. CaNiP2O7 completes the series of diphosphates AMP2O7 (A: Ca, Sr, Ba; M = Cr — Zn) and is isotypic to CaCoP2O7. Ni2+ ions in both phosphates show distorted octahedral coordination. The electronic transitions associated with the chromophores [Ni2+O6] are nicely reproduced by calculations within the framework of the angular overlap model (AOM). The parametrisation scheme leads to eσ, norm(2.0Å) = 3690 cm—1 and B = 896 cm—1 (C/B = 4.2) for CaNiP2O7 and eσ, norm(2.0Å) = 4150 cm—1 and B = 948 cm—1 (C/B = 4.5) for NiP4O11o(CaNiP2O7) = 6800 cm—1; Δo(NiP4O11) = 7100 cm—1).  相似文献   

11.
Reaction of NiCl2 with PhP(SiMe3)2, The Crystal Structure of [Ni12Cl2(PPh)2(P2Ph2)4(PHPh)8] [Ni12Cl2(PPh)2(P2Ph2)4(PHPh)8] ( 1 ) has been prepared by the reaction of NiCl2 with PhP(SiMe3)2. The structure has been characterized by X-ray crystal structure analysis. 1 contains a Ni12-cluster with m?4-PPh- and m?6-P2Ph2- as bridging ligands. The terminal PHPh- and Cl-ligands are bound to Ni-atoms. The Ni12-cluster can be described as an Ni8-cube, in which four edges are bridged by Ni-atoms.  相似文献   

12.
The crystal structure of K6[CdO4] and Rb2CdO2 has been determined from single crystal X-ray diffraction data and refined toR=0.058 (K6[CdO4]) andR=0.088 (Rb2CdO2). K6[CdO4] crystallizes hexagonal, space group P63mc with lattice constantsa=867.42 (6),c=665.5 (1) pm,c/a=0.767 andZ=2. It is isotypic with Na6[ZnO4]. Rb2CdO2 is orthorhombic, space group Pbcn witha=1045.0 (2),b=629.1 (1),c=618.3 (1) pm,Z=4, and crystallizes with the K2CdO2 structure type. The crystal structures can be deduced from the motif of a closest packed arrangement of O2– with hexagonal (K6[CdO4]) or cubic (Rb2CdO2) stacking. The tetrahedra occupied by Cd2+ are isolated (K6[CdO4]) or edge-shared (formation of infinite SiS2-like chains [CdO4/2]) (Rb2CdO2). The powder diffraction pattern of Rb6[CdO4] [a=906.6 (1),c=694.3 (1) pm] and Rb2Cd2O3 [a=642.6 (2),b=679.0 (1),c=667.9 (2) pm, =115.2 (1)] confirm isotypie with K6[CdO4] and K2Cd2O3 respectively.
Herrn Prof. Dr.Gutman zum 65. Geburtstag gewidmet.  相似文献   

13.
Synthesis and Crystal Structure of Mo2<>NCl8 and Mo3N2Cl11 The reaction of MoCl5 with Cl3VNCl at 140 °C in a sealed glass ampoule yields air sensitive black crystals of the mixed valent molybdenum(V, VI) nitride chloride, Mo2NCl8. It crystallizes in the monoclinic space group P2/c with a = 996.1(1), b = 629.4(1), c = 1780.8(3) pm, β = 101.82(2)°, and Z = 4. The crystal structure consists of dinuclear C2‐symmetrical units [Cl2(N≡)Mo(μ2‐Cl)3Mo(≡N)Cl2] and [Cl4Mo(μ2‐Cl)MoCl4]+, connected in an alternating sequence by asymmetric nitrido bridges Mo≡N‐Mo to form chains. The reaction of Cl3VNCl with MoCl3 at 140 °C affords Mo3N2Cl11, but for the prolonged reaction period, MoNCl3 is observed in addition. Mo3N2Cl11 can also be obtained from MoNCl3 and MoCl5 (2:1) at 140 °C. It forms orthorhombic, black crystals with the space group Pca21 and a = 1256.1(1), b = 1001.9(1), c = 1330.10(5) pm, and Z = 4. The structure contains the same dinuclear units [Cl2(N≡)Mo(μ2‐Cl)3Mo(≡N)Cl2] as in Mo2NCl8, which in this case are connected with MoCl4+ moieties by asymmetric nitrido bridges Mo≡N‐Mo forming chains. In Mo2NCl8 the Mo‐N distances in the nearly linear nitrido bridges are 167.6(2), and 214.8(2) pm, whereas in case of Mo3N2Cl11 two sets of Mo‐N distances of 166, 8(4) and 214, 0(4) pm as well as 166, 9(4) and 211, 9(4) pm are observed.  相似文献   

14.
15.
The compounds [(n‐Bu)4N]3[MoS4Ag3Cl4] ( 1 ) and [Et4N]3[WOS3Cu3I4] ( 2 ) were synthesized and characterized. Compound 1 crystallizes in the rhombohedral system, space group R3c with a = 17.194(1), b = 17.194(1), c = 39.194(3)Å, Z = 6, V = 10034.7(11)Å3. Compound 2 crystallizes in the rhombohedral system, space group R3c with a = 14.461(2), b = 14.461(2), c = 34.952(2)Å, Z = 6, V = 6329.9(13)Å3. The X‐ray crystallographic structure determinations show that these two cluster compounds consist of a slightly distorted cubic core. Nonlinear optical (NLO) properties of these two clusters were investigated by using Z‐scan techniques with an 8 ns pulsed laser at 532 nm; both clusters exhibit strong nonlinear optical absorption effect (effective α2 = 1.18 × 10—10 m · W—1 for 1 and 1.0 × 10—10 m · W—1 for 2 ).  相似文献   

16.
Synthesis and Crystal Structure of [(n‐Bu)4N][W6Cl18] Single‐crystals of [(n‐Bu)4N][W6Cl18] were obtained as thin needles by adding methanol to a solution of W6Cl18 and [(n‐Bu)4N]Cl in tetrahydrofuran. The structure was determined by single‐crystal X‐ray diffraction at 210 K. [(n‐Bu)4N][W6Cl18] crystallizes in the monoclinic space group C 2/c with Z = 8 and the lattice parameters a = 2175.6(1) pm, b = 1738.0(1) pm, c = 2160.36(9) pm, and β = 91.680(5) °. The crystal structure contains isolated [(W6Cl12i)Cl6a] clusters and [(n‐Bu)4N]+ ions.  相似文献   

17.
18.
Ruby‐red crystals of Ag2Bi2S3Cl2 were synthesized from AgCl and Bi2S3 by cooling a melt from 770 K to room temperature. X‐ray diffraction on powders and single‐crystals revealed a triclinic crystal structure with special lattice constants (P &1macr; (No. 2), a = 1085.0(2), b = 717.2(1), c = 1137.6(1) pm, α = 89.80(1)?, β = 74.80(1)?, γ = 87.81(1)?). In the structure [BiIIIS3Cl4] polyhedra form 2[BiS3/2Cl4/4] double‐layers by sharing common faces and edges. The silver(I) cations between the layers are coordinated either octahedrally by sulfide ions or tetrahedrally by sulfide and chloride ions. The deviations from the monoclinic space group P 1 21/c 1 are small and induce twinning along [010]. Further pseudosymmetry is based on the stacking of layer packages with the symmetry of the layer group P (2/c) 21/c 2/b.  相似文献   

19.
Rb5[SiO4][OH] crystallizes in the monoclinc space group C2/m with a = 737.3(1) pm, b = 1073.7(2) pm, c = 1207.2(2) pm, β = 106.07(2)° and Z = 4 (single crystal data; R1= 0.0681 all data). Layers of edge‐connected distorted trigonal prismatic [(OH)Rb6] entities and isolated tetrahedral [SiO4] units present the main structural features of this unprecedented structure type.  相似文献   

20.
Syntheses and Crystal Structures of [Cu4(As4Ph4)2(PRR′2)4], [Cu14(AsPh)6(SCN)2(PEt2Ph)8], [Cu14(AsPh)6Cl2(PRR′2)8], [Cu12(AsPh)6(PPh3)6], [Cu10(AsPh)4Cl2(PMe3)8], [Cu12(AsSiMe3)6(PRR′2)6], and [Cu8(AsSiMe3)4(PtBu3)4] (R, R′ = Organic Groups) Through the reaction of CuSCN with AsPh(SiMe3)2 in the presence of tertiary phosphines the compounds [Cu4(As4Ph4)2(PRR′2)4] ( 1 – 3 ) ( 1 : R = R′ = nPr, 2 : R = R′ = Et; 3 : R = Me, R′ = nPr) and [Cu14(AsPh)6(SCN)2(PEt2Ph)8] ( 4 ) can be synthesised. Using CuCl instead of CuSCN results to the cluster complexes [Cu14(AsPh)6Cl2(PRR′2)8] ( 5–6 ) ( 5 : R = R′ = Et; 6 : R = Me, R′ = nPr), [Cu12(AsPh)6(PPh3)6] ( 7 ) and [Cu10(AsPh)4Cl2(PMe3)8] ( 8 ). Through reactions of CuOAc with As(SiMe3)3 in the presence of tertiary phosphines the compounds [Cu12(AsSiMe3)6(PRR′2)6] ( 9 – 11 ) ( 9 : R = R′ = Et; 10 : R = Ph, R′ = Et; 11 : R = Et, R′ = Ph) and [Cu8(AsSiMe3)4(PtBu3)4] ( 12 ) can be obtained. In each case the products were characterised by single‐crystal‐X‐ray‐structure‐analyses. As the main structure element 1 – 3 each have two As4Ph42–‐chains as ligands. In contrast 4 – 12 contain discrete AsR2–ligands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号