首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A novel tetradentate dianionic Schiff base ligand, N ,N ′‐bis(2‐carboxyphenylimine)‐2,5‐thiophenedicarboxaldhyde (H2L) and some first row d‐transition metal chelates (Co(II), Cu(II), Ni(II) and Zn(II)) were synthesized and characterized using various physicochemical and spectroscopic methods. The spectroscopic data suggested that the parent Schiff base ligand coordinates through both deprotonated carboxylic oxygen and imine nitrogen atoms. The free Schiff base and its metal chelates were screened for their antimicrobial activities for various pathogenic bacteria and fungi using the agar well diffusion method. The antibacterial and antifungal activities of all the newly synthesized compounds are significant compared to the standard drugs ciprofloxacin and nystatin. The antioxidant activities of the compounds were determined by reduction of 1,1‐diphenyl‐2‐picrylhydrazyl and compared with that of vitamin C as a standard. DNA binding ability of the novel Schiff base and its complexes was investigated using absorption spectroscopy, fluorescence spectroscopy, viscosity measurements and thermal denaturation. The obtained results clearly demonstrate that the binding affinity with calf thymus DNA follows the order: Cu(II) complex > Ni(II) complex > Zn(II) complex > Co(II) complex >H2L. Furthermore, the DNA cleavage activity of the newly synthesized ligand and its metal complexes was investigated using supercoiled plasmid DNA (pUC18) gel electrophoresis.  相似文献   

2.
The title complex, [Cd2(C13H9Cl2N2O)2(NCS)2]n, is a novel thio­cyanate‐bridged polynuclear cadmium(II) compound. The CdII atom is six‐coordinated in a distorted octa­hedral configuration, with one O and two N atoms of one Schiff base mol­ecule and one terminal S atom of a bridging thio­cyanate ligand defining the equatorial plane, and one terminal N atom of another bridging thio­cyanate ligand and one O atom of another Schiff base mol­ecule occupying axial positions. Adjacent inversion‐related [2,4‐dichloro‐6‐(2‐pyridylmethyl­imino­meth­yl)phenolato]cadmium(II) moieties utilize bridging phenolate and thio­cyanate groups to form polymeric chains running along the b axis.  相似文献   

3.
The title complex, [Cu(C13H9Cl2N2O)(NCS)]n, is a novel thio­cyanate‐bridged polynuclear copper(II) compound. The CuII atom is five‐coordinated in a square‐pyramidal configuration, with one O and two N atoms of one Schiff base ligand and one terminal N atom of a bridging thio­cyanate ligand defining the basal plane, and one terminal S atom of another bridging thio­cyanate ligand occupying the axial position. The [2,4‐dichloro‐6‐(pyridin‐2‐ylmethyl­imino­methyl)­phenolato]­copper(II) moieties are linked by the bridging thio­cyanate ligands, forming polymeric chains running along the a axis.  相似文献   

4.
The tetranuclear cubane-like complex, [NiL(EtOH)]4·0.5EtOH (1) with tridentate Schiff base ligand (H2L= 2-Hydroxymethyl-N-salicylideneaniline) has been synthesized and its crystal structure and spectroscopic properties have been studied. The complex consists of a tetranuclear (NiO)4 cubane core, of which four nickel(Ⅱ) ions are bridged by μ3-alkoxide group and each nickel(Ⅱ) ion is coordinated to three μ3-alkoxide oxygen atoms, one imino nitrogen atom and one phenoxide oxygen atom from Schiff base ligand, and further ligated by one EtOH molecule, completing a distorted octahedral geometry.  相似文献   

5.
The title complex, [Cu(C11H14BrN2O)(N3)]n, is an inter­esting azide‐bridged polynuclear copper(II) compound. The CuII atom is five‐coordinated in a square‐pyramidal configuration, with one O and two N atoms of one Schiff base and one terminal N atom of a bridging azide ligand defining the basal plane, and another terminal N atom of another bridging azide ligand occupying the axial position. The {4‐bromo‐2‐[2‐(dimethyl­amino)ethyl­imino­meth­yl]phenolato}copper(II) moieties are linked by the bridging azide ligands, forming polymeric chains running along the b axis. Adjacent chains are further linked by weak Br⋯Br inter­actions into a sheet.  相似文献   

6.
Biologically active triazole Schiff bases ( L 1  L 3 ) derived from the reaction of 3‐amino‐1,2,4‐triazole with chloro‐, bromo‐ and nitro‐ substituted salicylaldehydes and their Zn(II) complexes (1–3) have been synthesized and characterized by their physical, spectral and analytical data. Triazole Schiff bases potentially act as tridentate ligands and coordinate with the Zn(II) metal atom through salicylidene‐O, azomethine‐N and triazole‐N. The complexes have the general formula [M(L‐H)2], where M = zinc(II) and L = ( L 1 – L 3 ), and observe an octahedral geometry. The Schiff bases and their Zn(II) complexes have been screened for in‐vitro antibacterial, antifungal and brine shrimp bioassay. The biological activity data show the Zn(II) complexes to be more potent antibacterial and antifungal than the parent simple Schiff bases. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

7.
The title complex, [Ag2(C7H5O2)2(C18H18F2N2)]n, is a dinuclear silver(I) compound with one inversion centre between pairs of Ag atoms and another at the mid‐point of the central C—C bond in the butane‐1,4‐diamine moiety. Each of the smallest repeat units consists of two silver(I) cations, two benzoate anions and one N,N′‐bis(2‐fluorobenzyl­idene)­butane‐1,4‐di­amine Schiff base ligand. Each AgI ion is three‐coordinated in a trigonal configuration by two O atoms from two benzoate anions and one N atom from a Schiff base ligand. The di‐μ‐benzoato‐disilver(I) moieties are linked by the bridging Schiff base ligand, giving zigzag polymeric chains with an [–Ag⋯Ag—N—C—C—C—C—N–]n backbone running along the b axis.  相似文献   

8.
D‐glucosamine Schiff base N‐(2‐deoxy‐β‐D‐glucopyranosyl‐2‐salicylaldimino) and its Cu(II) and Zn(II) complexes were synthesized and characterized. The hydrolysis of p‐nitrophenyl picolinate (PNPP) catalyzed by ligand and complexes was investigated kinetically by observing the rates of the release of p‐nitrophenol in the aqueous buffers at 25°C and different pHs. The scheme for reaction acting mode involving a ternary complex composed of ligand, metal ion, and substrate was established and the reaction mechanisms were discussed by metal–hydroxyl and Lewis acid mechanisms. The experimental results indicated that the complexes, especially the Cu(II) complex, efficiently catalyzed the hydrolysis of PNPP. The catalytic reactivity of the Zn(II) complex was much smaller than the Cu(II) complex. The rate constant kN showing the catalytic reactivity of the Cu(II) complex was determined to be 0.299 s?1 (at pH 8.02) in the buffer. The pKa of hydroxyl group of the ternary complex was determined to be 7.86 for the Cu(II) complex. © 2002 Wiley Periodicals, Inc. Int J Chem Kinet 34: 345–350, 2002  相似文献   

9.
Three novel chiral Schiff Base ligands (H2L) were prepared from the condensation reaction of 3‐formyl acetylacetone with the amino acids L ‐alanine, L ‐phenylalanine, and L ‐threonine. X‐ray single crystal analyses revealed that the Schiff Base compounds exist as enamine tautomers in the solid state. The molecular structure of the compounds is stabilized by an intramolecular hydrogen bridge between the enamine NH function and a carbonyl oxygen atom of the pentandione residue. Treatment of the ligands H2L with copper(II) actetate in the presence of pyridine led to the formation of copper complexes [CuL(py)]. In each of the complexes the copper atoms adopt a distorted square‐pyramidal coordination. Three of the basal coordination sites are occupied by the doubly deprotonated Schiff Bases L2– which act as tridentate chelating O, N, O‐ligands. The remaining coordination sites are occupied by a pyridine ligand at the base and a carboxyl oxygen atom of a neighboring complex at the apical position. The latter coordination is responsible for a catenation of the complexes in the solid state.  相似文献   

10.
Schiff base complexes of Cu(II), Ni(II), Cd(II), and Zn(II) with 3‐(2‐(2‐oxo‐2H ‐chromene‐3‐carbonyl)hydrazono)‐N ‐(pyridin‐2‐yl)butanamide (H2L) were produced. The synthesized compounds were deduced by elemental analysis, molar conductance, magnetic susceptibility, and spectroscopic techniques. The geometry of the prepared complexes was estimated by applying DFT method. Also, Cu(II) and Zn(II) were separated using a simple, quick, and low‐cost quantitative flotation technique preceding to their determinations using atomic absorption spectrophotometric (AAS). Additionally, the biological activities (antimicrobial, antioxidant, and cytotoxic) of isolated compounds were carried out.  相似文献   

11.
The title complex, [Cu(C11H14BrN2O)(NCS)]n, is an inter­esting thio­cyanate‐bridged polynuclear copper(II) compound, which crystallizes with two independent mol­ecules in the asymmetric unit. Each CuII atom is five‐coordinate in a square‐pyramidal configuration, with one O and two N atoms of one Schiff base ligand and one terminal N atom of a bridging thio­cyanate ligand defining the basal plane, and one terminal S atom of another bridging thio­cyanate ligand occupying the apical position. The {4‐bromo‐2‐[2‐(dimethyl­amino)ethyl­imino­meth­yl]phenolato}copper(II) units are linked by the bridging thio­cyanate ligands, forming polymeric chains running along the a axis. There are weak inter­molecular C—H⋯O and C—H⋯S hydrogen bonds between the chains in the crystal structure.  相似文献   

12.
In the novel title binuclear zinc(II) Schiff base complex, bis­(μ‐11‐thio­semicarbazonoindeno[1,2‐b]quinoxaline‐8‐carboxylato)bis­[(dimethyl sulfoxide)zinc(II)] dimethyl sulfoxide tri­solvate, [Zn2(C17H9N5O2S)2(C2H6OS)2]·3C2H6OS, each ZnII atom is five‐coordinated and situated in a distorted square‐pyramidal environment, coordinated by two L2− ligands and one dimethyl sulfoxide mol­ecule. Each L2− ligand, which coordinates to two ZnII atoms, has two parts. One part, acting in a tridentate chelating mode, coordinates to one ZnII atom through two N atoms and one S atom, while another part coordinates to another ZnII atom through a monodentate carboxylate group. The whole complex has a dimeric structure. The coordination mode of the nearly planar L2− ligand is quite different from the most common mode for Schiff bases.  相似文献   

13.
A new MnIII‐Schiff base complex, [MnL(OH2)](ClO4) ( 1 ) (H2L = N, N′‐bis‐(3‐Br‐5‐Cl‐salicylidene)‐1, 2‐diimino‐2‐methylethane), an inorganic model of the catalytic center (OEC, Oxygen Evolving Complex) in photosystem II (PSII), has been synthesized and characterized by elemental analysis, IR and EPR spectroscopy, mass spectrometry, magnetic susceptibility measurement and the study of its redox properties by cyclic and normal pulse voltammetry. This complex mimics reactivity (showing a relevant photolytic activity), and also some structural characteristics (parallel‐mode MnIII EPR signal from partially assembled OEC cluster) of the natural OEC. The complex 1 was found to rearrange in solution into a crystallographically solved square‐pyramidal complex, [MnLL′] ( 2 ) (HL′ = 6‐bromo‐4‐chloro‐2‐cyanophenol), through a process, which probably liberates radical species (detected by EPR), and provokes a C—N bond cleavage in the ligand. A photo‐radical mechanism is discussed to explain this rearrangement.  相似文献   

14.
The title racemic complex, bis[μ‐N‐(2‐oxidobenzylidene)‐d ,l ‐glutamato(2−)]bis[(isoquinoline)copper(II)] ethanol disolvate, [Cu2(C12H11NO5)2(C9H7N)2]·2C2H6O, adopts a square‐pyramidal CuII coordination mode with a tridentate N‐salicylideneglutamato Schiff base dianion and an isoquinoline ligand bound in the basal plane. The apex of the pyramid is occupied by a phenolic O atom from the adjacent chelate molecule at an apical distance of 2.487 (3) Å, building a dimer located on the crystallographic inversion center. The Cu...Cu spacing within the dimers is 3.3264 (12) Å. The ethanol solvent molecules are hydrogen bonded to the dimeric complex molecules, forming infinite chains in the a direction. The biological activity of the title complex has been studied.  相似文献   

15.
Fe3O4@SiO2 nanoparticles was functionalized with a binuclear Schiff base Cu(II)‐complex (Fe3O4@SiO2/Schiff base‐Cu(II) NPs) and used as an effective magnetic hetereogeneous nanocatalyst for the N‐arylation of α‐amino acids and nitrogen‐containig heterocycles. The catalyst, Fe3O4@SiO2/Schiff base‐Cu(II) NPs, was characterized by Fourier transform infrared (FTIR) and ultraviolet‐visible (UV‐vis) analyses step by step. Size, morphology, and size distribution of the nanocatalyst were studied by transmission electron microscopy (TEM), scanning electron microscopy (SEM), and dynamic light scatterings (DLS) analyses, respectively. The structure of Fe3O4 nanoparticles was checked by X‐ray diffraction (XRD) technique. Furthermore, the magnetic properties of the nanocatalyst were investigated by vibrating sample magnetometer (VSM) analysis. Loading content as well as leaching amounts of copper supported by the catalyst was measured by inductive coupled plasma (ICP) analysis. Also, thermal studies of the nanocatalyst was studied by thermal gravimetric analysis (TGA) instrument. X‐ray photoelectron spectroscopy (XPS) analysis of the catalyst revealed that the copper sites are in +2 oxidation state. The Fe3O4@SiO2/Schiff base‐Cu(II) complex was found to be an effective catalyst for C–N cross‐coupling reactions, which high to excellent yields were achieved for α‐amino acids as well as N‐hetereocyclic compounds. Easy recoverability of the catalyst by an external magnet, reusability up to eight runs without significant loss of activity, and its well stability during the reaction are among the other highlights of this catalyst.  相似文献   

16.
The two title complexes, catena‐poly[[{2,2′‐[1,3‐propane­diylbis(nitrilo­methyl­idyne)]diphenolato}cobalt(III)]‐μ‐azido], [Co(C17H16N2O2)(N3)]n, (I), and catena‐poly[[{2,2′‐[1,3‐propane­diylbis(nitrilo­methyl­idyne)]diphenolato}cobalt(III)]‐μ‐thio­cyanato], [Co(C17H16N2O2)(NCS)]n, (II), are isomorphous polynuclear cobalt(III) compounds. In both structures, the CoIII atom is six‐coordinated in an octa­hedral configuration by two N atoms and two O atoms of one Schiff base, and two terminal N or S atoms from two bridging ligands. The [N,N′‐bis­(salicyl­idene)propane‐1,3‐diaminato]cobalt(III) moieties are linked by the bridging ligands, viz. azide in (I) and thio­cyanate in (II), giving zigzag polymeric chains with backbones of the type [–Co—N—N—N—Co]n in (I) or [–Co—N—C—S—Co]n in (II) running along the c axis.  相似文献   

17.
《中国化学会会志》2017,64(9):1104-1110
A new unsymmetrical tridentate NNS Schiff base ligand, 2‐(2‐nitrophenylthio)‐N‐((pyridine‐2‐yl)methylene)benzenamine (L), and its Mn(II ), Ni(II ), Cu(II ), and Zn(II ) complexes were synthesized. These compounds were characterized by different physicochemical and spectroscopic techniques. The molecular structure of [NiL2 ](ClO4 )2 was determined by single‐crystal X‐ray diffraction. In this complex, two ligands coordinate through azomethine‐N, pyridine‐N, and thioether‐S, forming a mononuclear 6‐coordinate distorted octahedral geometry about a nickel.  相似文献   

18.
The Schiff base enaminones (3Z)‐4‐(5‐ethylsulfonyl‐2‐hydroxyanilino)pent‐3‐en‐2‐one, C13H17NO4S, (I), and (3Z)‐4‐(5‐tert‐butyl‐2‐hydroxyanilino)pent‐3‐en‐2‐one, C15H21NO2, (II), were studied by X‐ray crystallography and density functional theory (DFT). Although the keto tautomer of these compounds is dominant, the O=C—C=C—N bond lengths are consistent with some electron delocalization and partial enol character. Both (I) and (II) are nonplanar, with the amino–phenol group canted relative to the rest of the molecule; the twist about the N(enamine)—C(aryl) bond leads to dihedral angles of 40.5 (2) and −116.7 (1)° for (I) and (II), respectively. Compound (I) has a bifurcated intramolecular hydrogen bond between the N—H group and the flanking carbonyl and hydroxy O atoms, as well as an intermolecular hydrogen bond, leading to an infinite one‐dimensional hydrogen‐bonded chain. Compound (II) has one intramolecular hydrogen bond and one intermolecular C=O...H—O hydrogen bond, and consequently also forms a one‐dimensional hydrogen‐bonded chain. The DFT‐calculated structures [in vacuo, B3LYP/6‐311G(d,p) level] for the keto tautomers compare favourably with the X‐ray crystal structures of (I) and (II), confirming the dominance of the keto tautomer. The simulations indicate that the keto tautomers are 20.55 and 18.86 kJ mol−1 lower in energy than the enol tautomers for (I) and (II), respectively.  相似文献   

19.
Synthesis and Crystal Structure of Ruthenium(II) Complexes with Triazenido and Pentaazadienido Ligands The ruthenium(II) triazenido complex [RuCl(ClC6H4N3C6H4Cl)(p‐cymene)] ( 1 ) is obtained by the reaction of silver bis(p‐chlorphenyl)triazenid with [RuCl2(p‐cymene)]2 in CH2Cl2, and forms air stable, orange yellow crystals. It crystallizes as 1 ·CH2Cl2 in the orthorhombic space group Pbca with the lattice parameters a = 3134.3(3), b = 2105.7(2), c = 769.15(4) pm and Z = 8. In the diamagnetic mononuclear complex 1 the chelating triazenido ligand coordinates with the atoms N(1) and N(3). p‐Cymene binds η6 with its C6 ring. The reaction of the etherphosphane complex [RuCl2(Ph2PCH2C4H7O2)2] with 1, 3‐bis(p‐tolyl)triazenid in THF yields the complex [RuCl(tolyl‐N3‐tolyl)(Ph2PCH2C4H7O2)2] ( 2 ). 2 forms monoclinic, red crystals with the space group P21/c and a = 1521.0(2), b = 1451.8(2), c = 2073.7(2) pm, β = 99.29(1)° and Z = 4. It is air stable and diamagnetic. The triazenide ion coordinates with the atoms N(1) and N(3). One of the two etherphosphane ligands is chelating and coordinates with the P atom and one O atom, while the other ligand binds in a monodentate fashion with its P atom, resulting in a coordination number of six for the RuII. [Ag(tolyl‐N5‐tolyl)]2 reacts in THF with [RuCl2(C6H6)]2 to afford the air stable, diamagnetic pentaazadienido complex [RuCl(tolyl‐N5‐tolyl)(C6H6)] ( 3 ). 3 forms monoclinic, red crystals with the space group P21/c and a = 1462.4(1), b = 1056.51(8), c = 1371.4(1) pm, β = 114.36(1)° and Z = 4. The chelating pentaazadienido ligand coordinates with the atoms N(1) and N(3) at the divalent Ru atom. The benzene molecule binds η6 with its π system.  相似文献   

20.
The title compound, [Cu2(C13H14N3)2Cl2], is a neutral dimeric copper(II) complex. The two CuII atoms are asymmetrically bridged by two chloride ions. Each CuII atom is also bound to the three N atoms of a deprotonated tridentate Schiff base ligand, giving a distorted square‐pyramidal N3Cl2 coordination environment overall. The dinuclear complex lies across an inversion centre in the space group P. This work demonstrates the effect of ligand flexibility and steric constraints on the structures of copper(II) complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号