首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Nanostructured hydrogels based on "smart" polymer conjugates of poloxamers and protein molecules were developed in order to form stimulus-responsive materials with bioactive properties for 3-D cell culture. Functionalized Pluronic F127 was covalently attached to a fibrinopeptide backbone and cross-linked into a structurally versatile and mechanically stable polymer network endowed with bioactivity and temperature-responsive structural features. Small angle X-ray scattering and transmission electron microscopy combined with rheology were used to characterize the structural and mechanical features of this biosynthetic conjugate, both in solution and in hydrogel form. The temperature at which the chemical cross-linking of F127-fibrinopeptide conjugates was initiated had a profound influence on the mechanical properties of the thermo-responsive hydrogel. The analysis of the scattering data revealed modification in the structure of the protein backbone resulting from increases in ambient temperature, whereas the structure of the polymer was not affected by ambient temperature. The hydrogel cross-linking temperature also had a major influence on the modulus of the hydrogel, which was rationally correlated to the molecular structure of the polymer network. The hydrogel structure exhibited a small mesh size when cross-linked at low temperatures and a larger mesh size when cross-linked at higher temperatures. The mesh size was nicely correlated to the mechanical properties of the hydrogels at the respective cross-linking temperatures. The schematic charts that model this material's behavior help to illustrate the relationship that exists between the molecular structure, the cross-linking temperature, and the temperature-responsive features for this class of protein-polymer conjugates. The precise control over structural and mechanical properties that can be achieved with this bioactive hydrogel material is essential in designing a tissue-engineering scaffold for clinical applications.  相似文献   

2.
Modulation of the structural parameters of multivinyl hydrogels allows optimization of their permeability, which is a prerequisite for different biomedical applications. However, only a few studies to date have been reported regarding macromolecular diffusion within divinyl and multivinyl systems, and even less provide information about the correlation of diffusion to the network characteristics. Therefore, this study aimed to understand the permeability performance of tailored poly(vinyl alcohol) (PVA) multivinyl hydrogels and correlating it to the network characteristics using two common theories: rubber elasticity and equilibrium swelling. A systematic increase in the number of functional groups per PVA backbone successfully modulated the PVA physicomechanical properties. These modifications resulted in varying the hydrogel permeability performance to solutes of different sizes and shapes. Correlating the network characteristics to macromolecular permeability of hydrogels proved the reliability of applying the equilibrium swelling theory for hydrogel mesh size estimation over the rubber elasticity theory. © 2013 Wiley Periodicals, Inc. J. Polym. Sci. Part B: Polym. Phys. 2014 , 52, 63–72  相似文献   

3.
The equilibrium stress-strain properties and the swelling behavior of moderately cross-linked model networks of poly(oxypropylene) were studied. Results were in general agreement with the theory of rubber elasticity due to Flory. However, data on the highly cross-linked networks (M?c ≈ 725) could not be satisfactorily described by the recent theories of elasticity or swelling. This is believed to be primarily due to the marked non-Gaussian character of the very short network chains and the substantial chemical modification of the polymer by the cross-linking moiety which inevitably occurs at high cross-link densities.  相似文献   

4.
The purpose of this paper is studying the effect of incorporation of Multiwall Carbon Nanotubes (MWCNT) into two different nanocomposites in poly vinyl alcohol (PVA)/polyvinylpyrrolidone (PVP), and PVA/Polyethylene glycol (PEG). MWCNT were synthesized by chemical vapor deposition (CVD) method using acetylene and Fe/Co/Al2O3 as carbon precursor and catalyst, respectively. Nitric acid and sulfuric acid were used for purification and functionalization of MWCNT. Afterward, highly pure and functionalized MWCNT (0, 0.02, and 0.05% w/w) were incorporated in PVA/PVP and PVA/PEG to synthesize PVA/PVP/MWCNT and PVA/PEG/MWCNT nanocomposites hydrogel membranes that cross-linked by freezing–thawing. PEG and PVP were selected in these nanocomposites as dispersion matrix for MWCNT as well as for increasing the elasticity of the nanocomposites membranes. The morphology of the hydrogels was characterized by SEM, FTIR, XRD, TGA, and the mechanical properties of the hydrogel membranes were investigated. The swelling behavior in different pH-buffer solutions was studied as well as studying weight loss percentage and swelling kinetic. The drug releasing process of the hydrogel membranes was investigated using salicylic acid as a model drug. It was found that MWCNT are dispersed well into the polymers and crystallinity, mechanical properties and thermal stability of the hydrogels contain MWCNT are better than that without MWCNT. Maximum degree of swelling was observed at pH 7 and swelling degree increases with increasing the ratio of MWCNT in the hydrogels from 0.02 to 0.05%. All hydrogel membranes followed non-Fickian mechanism and drug releasing were controlled by varying the pH and amount of MWCNT.  相似文献   

5.
合成了一种磁性Fe3O4纳米颗粒稳定的水包油(O/W)Pickering乳液并以其作为交联剂,在适宜条件下引发单体丙烯酰胺聚合来制备了一种新型的磁性高强复合水凝胶.采用X射线衍射(XRD)及场发射扫描电子显微镜(SEM)分别对磁性Fe3O4纳米颗粒和复合水凝胶的结构进行了表征,结果表明Pickering乳胶粒子较均匀地分布在复合凝胶网络中.溶胀性能测试及溶胀动力学分析表明复合水凝胶具有良好的溶胀性能,能够吸收自身干重100倍左右的水,其溶胀过程不遵循Fickian扩散模型;拉伸测试表明该水凝胶具有优异的力学性能,其拉伸强度能够达到150 kPa左右,断裂伸长率能够达到300%左右,并且当其承受的应力释放后能快速地恢复到初始形态.磁性能测试的结果显示该水凝胶具有良好的磁性.  相似文献   

6.
A novel hybrid hydrogel was prepared from hemicelluloses, polyvinyl alcohol, and chitin nanowhiskers by the freeze–thaw technique. The hydrogel was characterized by Fourier-transform infrared (FT-IR) spectrometry, scanning electron microscopy, X-ray diffraction analysis, cross-polarization (CP)/magic-angle spinning (MAS) 13C nuclear magnetic resonance (NMR), and swelling property and compressive strength measurements. Atomic force microscopy images of chitin implied that the size of whiskers reached nanometer level with average length of about 200 nm and width of 40 nm. The FT-IR and NMR results indicated that physical cross-linking rather than chemical reaction occurred during the gelation process. The mechanical properties of the hydrogels were significantly improved with increasing proportion of chitin nanowhiskers, with the highest compressive stress of 9.6 MPa being found for Gel-0.5. The results showed that the repeated freeze–thaw cycles induced physical cross-linking of packed chains by hydrogen bonds among the polymers, and the concentration of chitin nanowhiskers affected the hydrogel morphology and properties. It is suggested that hydrogels with good mechanical properties can be successfully prepared by this physical method, offering promise for tissue engineering applications.  相似文献   

7.
A novel semi‐IPN nanocomposite hydrogel (CMC/PNIPA/Clay hydrogel) based on linear sodium carboxymethylcellulose (CMC) and poly(N‐isopropylacrylamide) (PNIPA) crosslinked by inorganic clay was prepared. The structure and morphology of these hydrogels were investigated and their swelling and deswelling kinetics were studied in detail. TEM images showed that the clay was substantially exfoliated to form nano‐dimension platelets dispersed homogeneously in the hydrogels and acted as a multifunctional crosslinker. The CMC/PNIPA/Clay hydrogels swell faster than the corresponding PNIPA/Clay hydrogels at pH 7.4, whereas they swell slower than the PNIPA/Clay hydrogels at pH 1.2. The CMC/PNIPA/Clay nanocomposite hydrogels showed much higher deswelling rates, which was ascribed to more passway formed in these hydrogels for water to diffuse in and out. The deswelling process of the hydrogels could be approximately described by the first‐order kinetic equation and the deswelling rate decreased with increasing clay content. The mechanical properties of the CMC/PNIPA/Clay nanocomposite hydrogels were analyzed based on the theory of rubber elasticity. It was found that with increasing clay content, the effective crosslink chain density, ve, increased whereas the molecular weight of the chains between crosslinks Mc decreased. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 1546–1555, 2008  相似文献   

8.
A new molecular thermodynamic model for describing the swelling behavior of thermo-sensitive hydrogels was developed. The model consists of two terms. One is the contribution of the mixing of hydrogel network and water, which is dependent on the local polymer concentration and the interaction between polymer segment and solvent. A closed packed lattice model for polymer solution developed by Yang et al. was adopted for this term. The other is the elastic contribution derived from the network elasticity, which is dependent on the cross-linking degree of gel network. The elastic Gibbs energy model based on the Gaussian chain model developed by Flory was adopted. The model equation has two parameters. One is an energy parameter ? reflecting the interaction between water and gel network, the other is a size parameter V* that represents the cross-linking degree of the hydrogel. When the energy parameter ? is expressed as a quadratic of inverse temperature, this model can describe the swelling equilibrium behavior of neutral thermo-sensitive hydrogels quite well. The influences of model parameters were discussed in details. The experimental swelling curves of two kinds of polyacrylamide-based gels were correlated and good agreement was obtained.  相似文献   

9.
Thermoresponsive hydrogels are of great importance as smart materials. They are usually composed of cross-linked polymers with a lower critical solution temperature (LCST). Although much is known about networks of poly(N-isopropylacrylamide), all other polymers are somewhat neglected. In this work, the temperature-dependent swelling behavior of differently cross-linked thermoresponsive poly(2-ethyl-2-oxazoline) (PEtOx) hydrogels were investigated with regard to varying parameters of the network composition. It was found that the degrees of swelling of the hydrogels converge for a certain polymer/solvent system at a distinct temperature independent of its degree of cross-linking. Furthermore, this temperature correlates with the LCST of the respective starting PEtOx. Its net chain molecular weight Mc only affects the maximum degree of swelling and thus, the swelling–deswelling rate of the hydrogel. The fundamental structure/property relations found in this study could be useful to predict the behavior of other thermoresponsive hydrogels.  相似文献   

10.
A novel stimuli-responsive organic/inorganic nanocomposite hydrogel (NC hydrogel) with excellent mechanical properties was synthesized by in situ polymerization of 2-(2-methoxyethoxy) ethyl methacrylate (MEO(2)MA), oligo (ethylene glycol) methacrylate (OEGMA) and acrylic acid (AAc), as the polymeric matrix (PMOA), and fibrillar attpulgite (AT), as the reinforcer and cross-linker. The effect of the AT content on the mechanical properties for the swollen and dried NC hydrogels was determined by tensile testing and dynamic mechanical analysis (DMA), respectively. The tensile testing results showed that the incorporation of AT nanoparticles significantly enhanced the mechanical properties of NC hydrogels. As the content of AT increased, the tensile strength, tensile modulus and effective cross-linked chain density increased. The DMA results showed that the storage modulus of AT/PMOA NC hydrogels was increased and the glass transition temperatures shifted to higher temperature compared to the pure PMOA hydrogel, which further indicated that the enhancement of mechanical property depended upon the presence and content of AT. In addition, the faster swelling rates of the NC hydrogels were observed in comparison with the corresponding physically cross-linked PMOA hydrogel, except for 1% AT/PMOA sample. However, the deswelling kinetics of NC hydrogels was obviously retarded.  相似文献   

11.
A series of physically cross-linked hydrogels composed poly(acrylic acid) and octylphenol polyoxyethylene acrylate with high mechanical strength are reported here with dual cross-linked networks that formed by silica nanoparticles (SNs) and hydrophobic association micro-domains (HAMDs). Acrylic acid (AA) and octylphenol polyoxyethylene acrylate with 10 ethoxyl units (OP-10-AC) as basic monomers in situ graft from the SNs surface to build poly(acrylic acid) hydrophilic backbone chains with randomly distributed OP-10-AC hydrophobic side chains. The entanglements among grafted backbone polymer chains and hydrophobic branch architecture lead to the SNs and HAMDs play the role of physical cross-links for the hydrogels network structure. The rheological behavior and polymer concentration for gelation process are measured to examine the critical gelation conditions. The correlation of the polymer dual cross-linked networks with hydrogels swelling behavior, gel-to-sol phase transition, and mechanical strength are addressed, and the results imply that the unique dual cross-linking networks contribute the hydrogels distinctive swelling behavior and excellent tensile strength. The effects of SNs content, molecular weight of polymer backbone, and temperature on hydrogels properties are studied, and the results indicate that the physical hydrogel network integrity is depended on the SNs and HAMDs concentration.  相似文献   

12.
Novel pH-sensitive hydrogels containing azoaromatic crosslinks were synthesized by the crosslinking of polymeric precursors. First, a reactive polymeric precursor was synthesized by copolymerization of N,N-dimethylacrylamide, N-tert-butylacrylamide, acrylic acid, and N-methacryloylglycylglycine p-nitrophenyl ester. The hydrogel was prepared in the second step by the reaction of the polymeric precursor with N,N′-(ω-aminocaproyl)-4,4′-diaminoazobenzene. The hydrogels were characterized by the network structure, (that is, content of crosslinks, unreacted pendent groups, and cycles), the equilibrium swelling ratio as a function of pH, modulus of elasticity in compression, and the degradability in vitro. The results obtained indicated that the hydrogel network structure strongly depends on the reaction conditions such as polymer concentration, and the ratio of the reactive groups during the crosslinking reaction. The swelling and mechanical properties of hydrogels can be controlled by the modification of polymer backbone structure and/or the crosslinking density. The rates of hydrogel degradation depended on their degree of swelling. The higher the degree of swelling, the higher the degradability. The properties of the hydrogels suggest that they have a potential as carriers for colon-specific drug delivery. © 1994 John Wiley & Sons, Inc.  相似文献   

13.
A new kind of pH-/temperature-responsive semi-interpenetrating polymer network hydrogels based on linear sodium carboxymethylcellulose (CMC) and poly(N-isopropylacrylamide) (PNIPA) cross-linked by inorganic clay (CMC/PNIPA/Clay hydrogel) was prepared. The temperature- and pH-responsive behaviors, the mechanical properties of these hydrogels were investigated. The CMC/PNIPA/Clay hydrogels exhibited a volume phase transition temperature around 32 °C with no significant deviation from the conventional PNIPA hydrogels. The swelling ratio of the CMC/PNIPA/Clay hydrogels gradually decreased with increasing the contents of clay. The influence of pH value on swelling behaviors showed that there is a maximum swelling ratio at pH 5.9. Moreover, the CMC/PNIPA/Clay hydrogels exhibited excellent mechanical properties with high tensile stress and elongation at break in excess of 1200%.  相似文献   

14.
The mechanical characterization of complex soft matter by quasi-static magnetometry using nanoscopic magnetic probes is demonstrated for model hydrogels doped with two types of elongated magnetic nanoparticles. Chemically crosslinked poly(acrylamide) (PAAm) hydrogels serve as the matrix in which nickel nanorods or weakly magnetized hematite (α-Fe2O3) ellipsoids are embedded as local probes. We investigated the swelling behavior of the ferrogels in order to verify that their equilibrium swelling degree in water is not influenced by the probes, shows a good correlation with the Frenkel–Flory–Rehner model. The proposed magnetomechanical method relies on a correlation between the shear modulus of the PAAm hydrogel matrix and the coercive fields of the corresponding isotropic ferrogels. By extending the Stoner–Wohlfarth model for single-domain blocked magnetic particles by a term for particle rotation in an elastic matrix, information on the shear modulus of the matrix can be obtained. Comparison of the results with the expected relation from rubber elasticity theory illustrates both the general potential as well as the limits of the approach. © 2012 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2012  相似文献   

15.
Poly(vinyl alcohol) (PVA) and polyamidoamine (PAMAM) dendrimers are water-soluble, biocompatible and biodegradable polymers, which have been widely applied in biomedical fields. In this paper, novel physically cross-linked hydrogels composed of PVA and amine-terminated PAMAM dendrimer G6-NH(2) were prepared by cyclic freezing/thawing treatment of aqueous solutions containing PVA and G6-NH(2). The FT-IR analysis and elemental analysis indicated that PAMAM dendrimer G6-NH(2) was successfully introduced into the formed hydrogels, possibly via hydrogen bonds among hydroxyl groups, amide groups and amino groups in PVA and PAMAM dendrimer in the process of freezing-thawing cycle. Compared with physically cross-linked PVA hydrogel, PVA/G6-NH(2) hydrogels show higher swelling ratios and faster re-swelling rate due to the higher hydrophilicity of PAMAM dendrimer G6-NH(2). Higher contents of G6-NH(2) in PVA/G6-NH(2) hydrogels resulted in higher swelling ratios and faster re-swelling rates. With increasing freezing/thawing cyclic times, the swelling ratios and re-swelling rates of PVA/G6-NH(2) hydrogels decreased, which is similar to that of physically cross-linked PVA hydrogel. Combining the special host property of polyamidoamine dendrimer, these novel physically cross-linked hydrogels are expected to have potential use in drug delivery, including improving drug-loading amounts in hydrogels and prolonging drug release time. Swelling ratios of physically cross-linked PVA/G6-NH(2)-50 hydrogels prepared by three, six, nine freezing/thawing cycles. The swelling equilibrium experiments were carried out in distilled water at 25 degrees C.  相似文献   

16.
In this work several hydrogels were obtained with two different poly(vinyl alcohol)s/PVAs as the main polymer in aqueous solutions containing 10% of PVA, 0.6% of agar, and 0.6% of κ-carrageenan (KC), cross-linked by gamma-rays from a 60Co irradiation source. The PVAs tested have different degrees of hydrolysis and viscosities at 4% with values closed to 30 mPa s. The aqueous polymeric solutions were prepared using two distinct processes: the simple process of heating–stirring and that of making use of an autoclave. The purpose of this study was to evaluate the influence of the dissolution process by means of both methods on the hydrogels’ properties obtained. These were investigated by means of degree of cross-linking/gel fraction, degree of swelling in water, and some mechanical properties. The results that are obtained for hydrogels synthesized from solutions of PVA, agar, KC, and blends thereof prepared by both dissolution processes showed higher degrees of swelling for hydrogels from the autoclaved polymer solutions than those from the solutions prepared by simple heating–stirring process. Furthermore, their hydrogels containing totally hydrolyzed PVA displayed higher tensile strength and lower elongation properties.  相似文献   

17.
Poly(methyl methacrylate) nanosize particles, made by microemulsion polymerization, were dispersed in an acrylamide aqueous solution, which was polymerized in the presence of a cross-linking agent to yield microstructured hydrogels. The kinetics of swelling and the mechanical properties of these hydrogels were investigated as a function of concentration of particles. The microstructured hydrogels exhibit higher equilibrium swelling and larger Young modulus than conventional (that is, without particles) polyacrylamide hydrogel. The morphology of the microstructured hydrogels was examined by transmission electron microscopy.  相似文献   

18.
This article describes the synthesis of various types of microgels with different cross-linking topologies. The swelling data of the standard systems can be fitted with non-affine theories of rubber elasticity. Light scattering shows the existence of long-range swelling heterogeneities. The dynamic mechanical behaviour shows some peculiarities, e.g. small spherical microgels show viscous flow. Besides statistically cross-linked systems, critically cross-linked as well as macroporous systems can be made. The critical systems exhibit a fractal structure scaling which depends on synthetic conditions. This dependence agrees well with the different dynamic percolation theories. On the other hand, no clear relation between structure scaling and the observed dynamic behaviour can be found. A qualitative scheme which explains various effects observed during cross-linking of microgels is presented.  相似文献   

19.
Development of high‐strength hydrogels has recently attracted ever‐increasing attention. In this work, a new design strategy has been proposed to prepare graphene oxide (GO)/polyacrylamide (PAM)/aluminum ion (Al3+)‐cross‐linked carboxymethyl hemicellulose (Al‐CMH) nanocomposite hydrogels with very tough and elastic properties. GO/PAM/Al‐CMH hydrogels were synthesized by introducing graphene oxide (GO) into PAM/CMH hydrogel, followed by ionic cross‐linking of Al3+. The nanocomposite hydrogels were characterized by means of FTIR, X‐ray diffraction (XRD), and scanning electron microscopy/energy‐dispersive X‐ray analysis (SEM‐EDX) along with their swelling and mechanical properties. The maximum compressive strength and the Young's modulus of GO3.5/PAM/Al‐CMH0.45 hydrogel achieved values of up to 1.12 and 13.27 MPa, increased by approximately 6488 and 18330 % relative to the PAM hydrogel (0.017 and 0.072 MPa). The as‐prepared GO/PAM/Al‐CMH nanocomposite hydrogels possess high strength and great elasticity giving them potential in bioengineering and drug‐delivery system applications.  相似文献   

20.
Hydrogels are attractive biomaterials for three-dimensional cell culture and tissue engineering applications. The preparation of hydrogels using alginate and gelatin provides cross-linked hydrophilic polymers that can swell but do not dissolve in water. In this work, we first reinforced pure alginate by using polyoxyethylene as a supporting material. In an alginate/PEO sample that contains 20 % polyoxyethylene, we obtained a stable hydrogel for cell culture experiments. We also prepared a stable alginate/gelatin hydrogel by cross-linking a periodate-oxidized alginate with another functional component such as gelatin. The hydrogels were found to have a high fluid uptake. In this work, preparation, characterization, swelling, and surface properties of these scaffold materials were described. Lyophilized scaffolds obtained from hydrogels were used for cell viability experiments, and the results were presented in detail.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号