首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Metal Salts of Benzene‐1, 2‐di(sulfonyl)amine. 8. Lamellar Layers Based upon Hydrogen Bonding and π‐Stacking: Crystal Structures of the Complexes [Mg(H2O)6]Z2 and [Be(H2O)4]Z2�2 H2O, where Z is C6H4(SO2)2N The crystal structures of the title complexes (both triclinic, space group P1¯, Z = 1 for M = Mg, Z = 2 for M = Be) have been determined by low‐temperature X‐ray diffraction. They consist of non‐coordinating ortho‐benzenedisulfonimide anions and, respectively, inversion‐symmetric octahedral [Mg(H2O)6]2+ cations or tetrahedral [Be(H2O)4]2+ cations and two non‐coordinating water molecules. In both structures, all O—H hydrogen bond donor groups are used to associate the components into two‐dimensional assemblies comprising an internal polar lamella of metal cations, (SO2)2N groups and water molecules, and hydrophobic peripheral regions consisting of vertically protruding benzo rings. Carbocycles drawn alternatingly from adjacent layers form π‐stacking arrays, whereby the aromatic rings display intercentroid distances in the range 340—370 pm. Several short C—H ⃜O contacts, which may be viewed as weak hydrogen bonds, occur within and between the layers.  相似文献   

2.
The title complexes, obtained by treating hot aqueous solutions of ortho‐benzenedisulfonimide with solid CdCO3 or CuO, have been characterized by low‐temperature X‐ray diffraction (both triclinic, space group P&1macr;, Z = 1, metal ions on inversion centres). The cations have trans‐octahedral coordinations provided by two Cd‐N bonded or two Cu‐O bonded anions and four water molecules [Cd‐N 234.7(2) pm; Cu‐O(anion) 240.4(1) pm, elongated by Jahn‐Teller distortion]; the copper complex contains two further, non‐coordinating, water molecules per formula unit. In both structures, the uncharged zero‐dimensional building blocks are associated via strong hydrogen bonds O(W)‐H···A and one short C‐H···O bond to form two‐dimensional assemblies comprising an internal polar lamella of metal cations, (SO2)2N groups and water molecules, and hydrophobic peripheral regions consisting of vertically protruding benzo rings. Carbocycles drawn alternatingly from adjacent layers form π‐stacking arrays, in which the parallel aromatic rings display intercentroid distances in the range 365‐385 pm and vertical ring spacings in the range 345‐385 pm.  相似文献   

3.
Metal Salts of Benzene‐1,2‐di(sulfonyl)amine. 5. Arene Stacking in the Channels of a Three‐Dimensional Coordination Polymer: Crystal Structure of the Sodium Complex [Na{C6H4(SO2)2N}(H2O)] and its Supramolecular Relationship to the Analogous Silver Complex The sodium compound NaZ · H2O, derived from HZ = ortho‐benzenedisulfonimide, has been characterized by single crystal X‐ray diffraction at –100 °C (orthorhombic, space group Pna21, Z = 4). The five‐membered 1,3,2‐dithiazolide heterocycle possesses an envelope conformation, the N atom lying 30.3(1) pm outside the mean plane of the S–C–C–S moiety. The sodium ion attains a severely distorted octahedral coordination via Na+…Oδ– interactions with four anions and one water molecule. In contrast to the previously reported lamellar layer structures of CsZ, RbZ · H2O and KZ · H2O, the present crystal displays a three‐dimensional coordination assembly consisting of sodium ions, (SO2)2N groups and water molecules. This polar framework is pervaded by parallel channels approximately 800 × 800 pm2 in profile, into which the lipophilic benzo rings are stacked at intercentroid distances of 402 pm. Re‐examination of AgZ · H2O (Z. Anorg. Allg. Chem. 1993 , 619, 1441) discloses a striking supramolecular relationship to the sodium congener. In the crystal packing of the silver complex, one‐dimensional strands comprising pentacoordinate cations are associated by O–H…O(S) hydrogen bonds into a three‐dimensional polar framework, which again accommodates stacks of benzo groups within parallel channels.  相似文献   

4.
Structures of Ionic Di(arenesulfonyl)amides. 6. Limits to the Formation of Lamellar Metal Di(arenesulfonyl)amides: Three Lithium Complexes and One Cadmium Complex According to low‐temperature X‐ray studies, the new compounds LiN(SO2C6H4‐4‐X)2 · 2 H2O, where X = COOH ( 1 ) or COOMe ( 2 ), LiN(SO2C6H4‐4‐CONH2)2 · 4 H2O ( 3 ), and Cd[N(SO2C6H4‐4‐COOH)2]2 · 8 H2O ( 4 ) crystallize in the triclinic space group P1 ( 1 – 3 : Z′ = 1; 4 : Z′ = 1/2, Cd2+ on an inversion centre) and display almost perfectly folded anions approximating to mirror symmetry. The lithium ions in 1 – 3 have distorted tetrahedral environments respectively set up by two O=S groups drawn from different anions and two water molecules, two O=S groups of a chelating anion and two water molecules, or one O=C group and three water ligands, whereas the cation of 4 is fully hydrated to form an octahedral [Cd(H2O)6]2+ complex. The structure refinements for 3 and 4 were marred by positional disorder of the non‐coordinating N(SO2)2 moieties. Compounds 1 and 4 extend a previously described series of lamellar metal di(arenesulfonyl)amides where the two‐dimensional inorganic component is comprised of cations, N(SO2)2 groups and water molecules and the outer regions are formed by the 4‐substituted phenyl rings. Both crystal packings are governed by self‐assembly of parallel layers through exhaustive hydrogen bonding between carboxylic groups, and there is good evidence that the labile inorganic networks, generated via Li–O and hydrogen bonds in 1 or solely hydrogen bonds in 4 , are efficiently stabilized by the strong cyclic (COOH)2 motifs within the interlayer regions. In the absence of these, the lamellar architecture is seen to collapse in 2 and 3 , where the carboxyl groups are replaced by methoxycarbonyl or carbamoyl functions and the inorganic components are segregated in parallel tunnels pervading the anion lattices.  相似文献   

5.
Structures of Ionic Di(arenesulfonyl)amides. 4. Cross‐Linking Lamellar Layers by O–H…O Hydrogen Bonds: Structures of MN(SO2C6H4‐4‐COOH)2 (M = K, Rb, Cs) Syntheses and low‐temperature X‐ray crystal structures are reported for MIN(SO2C6H4‐4‐COOH)2, where M = K (monoclinic, space group P21/c, Z = 4, Z′ = 1), M = Rb (monoclinic, P21, Z = 4, Z′ = 2), or M = Cs (monoclinic, P21/c, Z = 4, Z′ = 1). The three compounds are examples of layered inorgano‐organic solids where the inorganic component is comprised of metal cations and N(SO2)2 groups and the outer regions are formed by the 4‐carboxy substituted phenyl rings of the folded anions. In the two‐dimensional coordination networks, K and Cs adopt irregular and chemically distinct [MN1O7] octacoordinations, whereas the independent Rb cations attain irregular nonacoordinations of type [RbN2O7] or [RbO9] respectively. The crystal packings of the compounds are governed by self‐assembly of parallel layers through exhaustive hydrogen bonding between carboxylic acid groups, resulting in a dense array of cyclic (COOH)2 motifs within the interlamellar regions.  相似文献   

6.
Metal Salts of Benzene‐1, 2‐di(sulfonyl)amine. 9. The Barium Complex [[Ba{C6H4(SO2)2N}2(H2O)22]: A Columnar Coordination Polymer with Lamellar Crystal Packing The title complex, obtained by treating ortho‐benzenedi‐sulfonimide with Ba(OH)2 in aqueous solution, has been characterized by low‐temperature X‐ray diffraction (monoclinic, space group C2/c, Z = 4, Ba2+ on a crystallographic twofold axis). The cation attains a tenfold coordination by accepting bonds from two water molecules, four κ1O‐bonding anions and two (O, N)‐chelating anions. The cation‐anion interactions create columnar strands parallel to the z axis, from which protrude twin stacks of benzo rings in the directions ±x, and water molecules and non‐coordinating sulfonyl oxygen atoms in the directions ±y. Adjacent strands related by translation parallel to y are associated via O(W)—H···O=S hydrogen bonds to form lamellar sandwich layers. The contiguous benzo rings of adjacent layers are markedly interlocked.  相似文献   

7.
Metal Salts of Benzene‐1,2‐di(sulfonyl)amine. 3. Crystal Structures of the Free Protonated Ligand HN(SO2)2C6H4 (= HZ) and the Lamellar Cesium Salt CsZ Benzene‐1,2‐di(sulfonyl)amine ( 1 ; HZ), known since 1921, is a very strong NH acid and readily reacts with aqueous CsCl to form crystalline CsZ ( 3 ). For both compounds, crystal structures were determined by X‐ray diffraction at –100 °C ( 1 : monoclinic, space group P21/n, Z = 4; 3 : orthorhombic, Cmcm, Z = 4). In 1 , the five‐membered 1,3,2‐dithiazole heterocycle possesses an envelope conformation, the N atom lying 29.4(2) pm outside the mean plane of the S–C–C–S moiety [S–N 167.06(15) and 167.53(15) pm, S–N–S 114.57(8)°]. In the crystal, HZ molecules are linked into chains by a conventional N–H…O hydrogen bond and further associated via four weak C–H…O bonds to form a three‐dimensional network. The conjugate Z ion in the layered structure of the salt 3 displays crystallographic C2v symmetry, leading to an ideally planar bicyclic framework [S–N 158.29(15) pm, S–N–S 116.53(17)°]. Each of the five electronegative atoms bridges two cations, Cs attaining a tenfold coordination by forming bonds to two (O,N,O)‐chelating and four κ1O‐monodentate ligands. The Cs–O/N interactions create a polar [CsN(SO2)2] lamella, which is lipophilically wrapped by parallel benzo rings protruding perpendicularly from its surfaces. In contrast to the previously reported lamellar metal di(arenesulfonyl)amides, the aromatic groups pertaining to adjacent layers of 3 are seen to be markedly interlocked.  相似文献   

8.
Metal Salts of Benzene‐1,2‐di(sulfonyl)amine. 4. Hydrophobically Wrapped Two‐Dimensional Polymers: Crystal Structures of the Isostructural Metal Complexes [M{C6H4(SO2)2N}(H2O)] (M = K, Rb) and of the Structurally Related Ammonium Salt [(NH4){C6H4(SO2)2N}(H2O)] The previously unreported compounds KZ · H2O ( 1 ), RbZ · H2O ( 2 ) and NH4Z · H2O ( 3 ), where Z is Ndeprotonated ortho‐benzenedisulfonimide, are examples of layered inorgano‐organic solids, in which the inorganic component is comprised of metal or ammonium cations, N(SO2)2 groups and water molecules and the outer regions are formed by the planar benzo rings of the anions. The metal complexes 1 and 2 were found to be strictly isostructural, whereas 3 is structurally related to them by a non‐crystallographic mirror plane ( 1 – 3 : monoclinic, space group P21/c, Z = 4; single crystal X‐ray diffraction at low temperatures). In each structure, the five‐membered 1,3,2‐dithiazolide heterocycle possesses an envelope conformation, the N atom lying about 40 pm outside the mean plane of the S–C–C–S moiety. The metal complexes feature two‐dimensional coordination networks interwoven with O–H…O hydrogen bonds originating from the water molecules. The metal centres adopt an irregular nonacoordination formed by five sulfonyl O atoms, two N atoms and two μ2‐bridging water molecules; each M+ is connected to four different anions. When NH4+ is substituted for M+, the metal–ligand bonds are replaced by N+–H…O hydrogen bonds, but the general topology of the lamella is not affected. In the three structures, the lipophilic benzo groups protrude obliquely from the surfaces of the polar lamellae and display marked interlocking between adjacent layers.  相似文献   

9.
Polysulfonylamines. CLXIV. Crystal Structures of Metal Di(methanesulfonyl)amides. 13. Dithallium Tris(dimesylamido‐N)argentate: A Two‐Dimensional Coordination Polymer The complex salt Tl2[Ag{N(SO2Me)2}3] (monoclinic, space group P21/n, Z′ = 1) was obtained by serendipity. Its layer structure displays two unprecedented characteristics, viz. one (MeSO2)2N ion that strongly deviates from the C2‐symmetric standard conformation of this species and approximates to mirror symmetry, and a tris(dimesylamido)argentate anion featuring a trigonal‐planar AgN3 core with Ag—N bond lengths of 225.6(6), 226.0(6), 236.3(6) pm and N—Ag—N angles in accordance with VSEPR concepts [149.8(2) vs. 102.8(2) and 107.3(2)°]. The independent thallium ions are coordinated by the complex anions to form monolayer substructures, in which Tl(1) attains an O6 and Tl(2) an O5 environment; the monolayers are associated into bilayers via one independent set of Tl(2)—O bonds that concomitantly raise the coordination number for Tl(2) to six. Both TlO6 polyhedra may be viewed as extremely distorted octahedra reflecting the stereochemical activity of the 6s lone pair of electrons. The two‐dimensional Ag—N/Tl—O bonding system is reinforced by a three‐dimensional network of weak C—H···O hydrogen bonds.  相似文献   

10.
Structures of Ionic Di(arenesulfonyl)amides. 8. Sodium Bis[di(4‐fluorobenzenesulfonyl)amido‐N]argentate: A Heterobimetallic Complex Exhibiting a Lamellar Layer Structure and Short C–H···F–C Interlayer Contacts Na[Ag{N(SO2–C6H4–4‐F)2}2] (monoclinic, C2/c, Z′ = 1/2) is the first heterobimetallic representative in a well‐documented class of layered inorgano‐organic solids where the inorganic component is comprised of metal cations and coordinating N(SO2)2 groups and the outer regions are formed by the aromatic rings of the di(arenesulfonyl)amide entities, which adopt a folded conformation approximating to mirror symmetry. The inversion‐symmetric bis(amido)argentate unit of the novel compound displays an exactly linear N–Ag–N core and short Ag–N bonds of 217.55(17) pm (at ?140 °C); the coordination number of the silver ion is extended to 2 + 6 by four internal and two external Ag···O secondary interactions. The polar lamella is constructed from rows of Na+ ions located on twofold axes, alternating with bis(amido)argentate strands reinforced by Ag···O interactions and weak C–H···O hydrogen bonds; Na+ is embedded in an O6 environment. Adjacent layers are cross‐linked via short C–H···F–C contacts suggestive of weak hydrogen bonding enhanced by cooperativity.  相似文献   

11.
Structures of Ionic Di(arenesulfonyl)amides. 2. Silver(I) Di(arenesulfonyl)amides and a Silver(I) (Arenesulfonyl)(alkanesulfonyl)amide: From Ribbons to Lamellar Layers Exhibiting Short C–H…Hal–C or C–Br…Br–C Interlayer Contacts Low‐temperature X‐ray crystal structures are reported for AgN(SO2C6H4‐4‐X)2 · H2O, where X is Cl ( 4 ) or Br ( 5 ), and for AgN(SO2Ph)(SO2Me) ( 6 ). Compounds 4 and 5 and the previously described F analogue ( 3 ) are isotypic, though not strictly isostructural (monoclinic, space group P21/c, Z = 4, but egregiously large discrepancies of x and z coordinates for corresponding atoms). Throughout this triad, glide‐plane related formula units are linked along the z axis to form infinite ribbons [(ArSO2)2N–Ag(μ‐H2O)], in which Ag extends its coordination number to five by accepting one Ag–O bond from each of the (ArSO2)2N ligands in the adjacent units. By means of O–H…O(S) hydrogen bonds, the ribbons are associated into lamellar layers parallel to the xz plane. Owing to the folded conformation of the anions, the layers display an inner polar region of Ag atoms, H2O molecules and N(SO2)2 groups, outer apolar regions of stacked pairs of aryl rings, and interlayer regions hosting the halogen atoms. Inspection of the latter areas provides sound evidence that the distinct juxtapositions of adjacent layers arise from specific interlamellar attractions and repulsions ( 3 : two C–H…F, all F…F beyond the van der Waals limit dW; 4 : one C–H…Cl, close packing of Cl atoms at Cl…Cl ≈ dW; 5 : one C–H…Br, one short Br…Br contact < dW, all other Br…Br > dW). Structure 6 (monoclinic, P21/n, Z = 4) consists of a lamellar coordination polymer, in which the cation accepts one Ag–N and three Ag–O bonds drawn from four different anions. On account of crystal symmetry, the extended ligand has its Ph and Me groups distributed on both sides of the sheet, the phenyl rings forming the apolar regions of the lamella, whereas the smaller methyl groups are integrated into the corrugated inorganic region by means of weak C–H…O hydrogen bonds.  相似文献   

12.
Polysulfonylamines. CLXVI. Crystal Structures of Metal Di(methanesulfonyl)amides. 15. The Isotypic Crystal Structures of Ammonium and Cesium Dimesylamide: Crystallographic Congruency of Hydrogen Bonds N—H···O/N and Metal‐Ligand Interactions Cs—O/N The ammonium salt NH4[N(SO2CH3)2] and its previously reported cesium analogue Cs[N(SO2CH3)2] are isostructural (monoclinic, space group P21/n, Z = 4, V at —140 °C: 0.761 and 0.832 nm3 respectively). The cesium ion adopts an irregular (O6N)‐heptacoordination by forming close contacts to one (O, N)‐chelating, one (O, O)‐chelating and three κ1O‐bonding anions, whereas in the ammonium‐based structure each of the seven Cs—O/N interactions is perfectly mimicked by an N—H···O/N hydrogen‐bond component. To this effect, three N—H donors are engaged in asymmetric three‐centre bonds, the fourth in a moderately strong and approximately linear two‐centre bond. The crystal packings consist of anion monolayers that intercalate planar zigzag rows of cations propagating around symmetry centres (Cs···Cs alternatingly 422.5 and 487.5 pm, Cs···Cs···Cs 135.7°; N···N alternatingly 397.4 and 474.1 pm, N···N···N 136.1°). Each cation row is surrounded by and bonded to four translation‐generated anion stacks, and each anion stack connects two cation rows. The net effect is that the packings display congruent three‐dimensional networks of metal‐ligand bonds or hydrogen bonds, respectively. Moreover, close C—H···O/N interanion contacts consistent with weak hydrogen bonding are observed in both structures.  相似文献   

13.
Polysulfonylamines. CLXV. Crystal Structures of Metal Di(methanesulfonyl)amides. 14. Cs3Ag[(MeSO2)2N]4 and CsAg[(MeSO2)2N]2: A Three‐Dimensional and a Layered Coordination Polymer Containing Bis(dimesylamido‐N)argentate Building Blocks Serendipitous formation pathways and low‐temperature X‐ray structures are reported for the coordination compounds Cs3A2[AgA2] ( 1 ) and Cs[AgA2] ( 2 ), where A represents the pentadentate dimesylamide ligand (MeSO2)2N. Both phases (monoclinic, space group C2/c, Z′ = 1/2) contain inversion‐symmetric bis(dimesylamido‐N)argentate units displaying exactly linear N—Ag—N cores and short, predominantly covalent Ag—N bonds [ 1 : 213.5(2), 2 : 213.35(12) pm]; in each case, the coordination number of the silver ion is extended to 2 + 6 by four internal and two external Ag···O secondary interactions. The three‐dimensional coordination polymer 1 is built up from alternating layer substructures [{Cs(1)}{A}4/2] with Cs(1) lying on twofold rotation axes and [{Cs(2)}2{AgA2}4/4]+ with Cs(2) occupying general positions. Within the substructural layers, both types of cesium cation have approximately planar O4 environments, whereas the final coordination spheres including interlayer bonds are extended to O6 for Cs(1) and to O8N for Cs(2). Compound 2 , in contrast, forms a genuine layer structure. The layers are constructed from Cs+ chains located on twofold rotation axes, alternating with [AgA2] stacks reinforced by Ag···O secondary interactions and weak C—H···O hydrogen bonds; Cs+ is embedded in an O8 environment. Both structures are pervaded by a three‐dimensional C—H···O network.  相似文献   

14.
The behavior of N,N′‐bis(pyridin‐2‐ylmethylene)benzene‐1,4‐diamine (L) towards zinc(II), cadmium(II), and mercury(II) chlorides was studied in methanol solutions. In the presence of metal ions, the organic molecule was decomposed to N‐(pyridin‐2‐ylmethylene)benzene‐1,4‐diamine (L′), and complexes of general formula M(L′)Cl2 were isolated from the mixture. The complexes were identified by elemental analysis, IR, 1H NMR, and 13C NMR spectra, and their structures were further confirmed by single‐crystal X‐ray diffraction analysis of Zn(L′)Cl2 and Hg(L′)Cl2. In the solid state of both complexes, the molecules are stabilized by N–H ··· Cl hydrogen bonds and aromatic π–π stacking interactions.  相似文献   

15.
Polysulfonylamines. CLII. Crystal Structures of Metal Di(methanesulfonyl) amides. 6. Three Layer Structures: The Isotypic Binary Compounds M[(MeSO2)2N]2 (M = Sr, Pb) and the Ethanol Solvate Pb[(MeSO2)2N]2 · EtOH Low‐temperature X‐ray crystal structures are reported for the layer compounds SrA2 (monoclinic, space group P21/n, Z′ = 1), PbA2 (isotypic and isostructural with SrA2), and PbA2·EtOH (triclinic, P1¯, Z′ = 1), where A denotes the anion obtained by deprotonation of the strong NH acid (MeSO2)2NH. The ternary compound appears to be the first crystallographically established ethanol solvate of a lead(II) complex. In the two‐dimensional coordination networks, the cations adopt either a distorted cubic or, in the solvate, an irregular (O6N2)‐octacoordination, the metal centres of the isotypic structures forming close contacts to two (O, N)‐chelating and four κ1O‐bonding anions, whereas in the solvate one of the latter ligands is displaced by an EtOH molecule. In the isotypic structures, the Pb—O distances are systematically longer than the Sr—O distances and the Pb—N bonds shorter than the Sr—N bonds, which correlates with the softer character of Pb2+ as compared to Sr2+. The 6s lone pair on Pb2+ is stereochemically inactive in both lead compounds. Analogies and discrepancies between the layer architectures are discussed in detail, including an evaluation of short C—H···O contacts in terms of weak hydrogen bonding. Two complexes of composition PbA2·2 L, where L is pyridine or 1, 10‐phenanthroline, have been synthesized and characterized by analytical methods.  相似文献   

16.
Polysulfonylamines. CLXXVIII. Onium Salts of Benzene‐1,2‐di(sulfonyl)amine (HZ): A Second Crystal Form of the Ammonium Salt NH4Z·H2O and Crystal Structure of the Bis(triphenylphosphoranylidene)ammonium Salt [Ph3PNPPh3]Z A dimorphic form of NH4Z·H2O, where Z? is N‐deprotonated ortho‐benzenedisulfonimide, has been obtained and structurally characterized (previously known form 1A : monoclinic, P21/c, Z′ = 1; new polymorph 1B : monoclinic, P21/n, Z′ = 1). Both structures are dominated by an abundance of classical hydrogen bonds N+–H/O–H···O=S/OH2, whereby the anionic N? function does not act as an acceptor. The major difference between the dimorphs arises from the topology of the hydrogen bond network, which is two‐dimensional in 1A , leading to a packing of discrete lamellar layers, but three‐dimensional in 1B . Moreover, the latter network is reinforced by a set of weak C–H··O/N hydrogen bonds, whereas the layered structure of 1A displays only one independent C–H···O bond, providing a link between adjacent layers. The compound [Ph3PNPPh3]Z ( 2 , monoclinic, P21/c, Z′ = 1) is the first structurally authenticated example of an ionic Z? derivative in which the cation contains neither metal bonding sites nor strong hydrogen bond donors. This structure exhibits columns of anions, surrounded by four parallel columns of cations, giving a square array. The large cations are associated into a three‐dimensional framework via weak C–H···C(π) interactions and an offset face‐to‐face phenyl interaction, while the anions occupy tunnels in this framework and are extensively bonded to the surrounding cations by C–H···O/N? hydrogen bonds and C–H···C(π) interactions.  相似文献   

17.
Polysulfonylamines. CLIV. Crystal Structures of Metal Di(methanesulfonyl)amides. 7. A Three‐Dimensional Coordination Polymer Built up from Layers and Pillars: Crystal Structure of Ba[(CH3SO2)2N]2·2H2O The barium compound BaA2·2H2O, derived from HA = di(methanesulfonyl)amine, has been characterized by single crystal X‐ray diffraction at —95 °C (monoclinic, space group P21/n, Z = 4). Despite numerous metal‐ligand bonds, the independent anions A and A′ retain the pseudo‐C2 symmetric conformation that commonly occurs in organic onium salts BH+A. The large cation attains ninefold coordination via interactions with one (O, N)‐chelating A, three κ1O‐bonding A, two κ1O‐bonding A′ and two monodentate water molecules; if a distinctly longer barium‐water distance is included, the coordination number may alternatively be viewed as 9 + 1 and one water molecule regarded as an asymmetrically μ2‐bridging ligand. In contrast to the previously reported layer structures of SrA2 and PbA2, the present crystal displays a three‐dimensional coordination assembly consisting of layers formed by the cations, the water molecules and the pentadentate A ligands, and of interlayer pillars provided by the bidentate A′ ligands; however, the Ba2+/A substructure turns out to be topologically and crystallographically congruent with the corresponding M2+/A substructures in SrA2 and PbA2. The crystal cohesion of the barium complex is reinforced by four O(W)—H···O=S hydrogen bonds and several non‐classical C—H···O=S hydrogen bonds.  相似文献   

18.
Polysulfonylamines. CLVIII. Crystal Structures of Metal Di(methanesulfonyl)amides. 9. Enhancing Crystal Symmetry by Co‐crystallization: Monoclinic Na[(CH3SO2)2N]·H2O and Tetragonal NaK[(CH3SO2)2N]2·2H2O The three‐dimensional coordination polymers NaA·H2O ( 1 ) and NaKA2·2H2O ( 2 ), derived from the strong NH acid (MeSO2)2NH = HA, have been characterized by single crystal X‐ray diffraction at —95 °C ( 1 : monoclinic, space group C2/c, Z′ = 2; 2 : tetragonal, P43212, Z′ = 1). The results suggest that structures with Z′ > 1 are good candidates for co‐crystallization experiments. Both packings display layer substructures built up from the multidentately coordinating anions, the aquo ligands and two kinds of chemically and/or crystallographically distinct cations, whereas cations of a third type are intercalated between the layers. All anions have the extended standard conformation of this species; 1 contains two pseudo‐C2 symmetric A, 2 one pseudo‐C2 and two crystallographically C2 symmetric A. Details for structure 1 : a) The layer‐forming Na(1) and Na(3) cations are distributed over three distinctly separated planes, Na(1) occupies general positions and has a non‐octahedral O5N environment, Na(3) resides on inversion centres that generate an octahedral O6 coordination; b) one independent A is oriented vertically, the other parallel to the layer plane; c) the intercalated Na(2) ions occupy twofold rotation axes within a single plane and possess a non‐octahedral O6 environment. Details for structure 2 : a) The layer‐forming K(1) and K(2) cations occupy twofold rotation axes within a unique plane and have chemically identically O6N2 coordination polyhedra approximating to hexagonal bipyramids; b) all A are oriented vertically to the layer plane; c) the intercalated sodium ions reside on pseudo‐inversion centres, have an octahedral O6 environment and are distributed over two closely adjacent planes. Owing to the enhanced packing efficiency of the bimetal complex, the vertical layer repeat‐distance is reduced from 1140 pm for 1 to 720 pm for 2 . Each structure exhibits an infinite cation‐water chain that propagates in the direction of the layer stacking and contains the three independent cations.  相似文献   

19.
Structures of Ionic Di(arenesulfonyl)amides. 1. Onium Di(arenesulfonyl)amides: From the Extended to the Folded Conformation of the (ArSO2)2N Anion In a study preceding the investigation of lamellar metal di(arenesulfonyl)amides, the bonding and conformational characteristics of non‐coordinating (ArSO2)2N ions have been established within a series of appropriate onium salts. Starting from the strong NH acids HN(Q‐4‐X)2, where Q = SO2C6H4, the following model compounds were prepared by neutralization or cocrystallization procedures and subjected to low‐temperature X‐ray analyses: Pr4N. N(Q‐4‐COOMe)2 ( 2 , monoclinic, space group C2/c, Z = 4), Pr4N · N(Q‐4‐COOH)2 ( 3 , monoclinic, Cc, Z = 4, O2SNSO2 group disordered), Me3NOH · N(Q‐4‐F)2 ( 4 , monoclinic, P21/n, Z = 4), [DA18C6]2⊕ · 2 N(Q‐4‐H)2 ( 6 , cation = 1,10‐diazonia‐18‐crown‐6, monoclinic, P21/c, Z = 2), [DA18C6]2⊕ · 2 N(Q‐4‐Me)2 ( 7 , triclinic, P1, Z = 1), and [DA18C6]2⊕ · 2 N(Q‐4‐Cl)2 · 2 CH2Cl2 ( 8 , monoclinic, P21/c, Z = 2). Structures 2 – 4 represent the energetically favoured, extended or open conformation of the CO2S–N–SO2C bridge (crystallographic twofold symmetry for 2 , pseudo‐C2 symmetry for 3 and 4 ), whereas in 6 – 8 the anions adopt the folded or hair‐pin conformation (pseudo‐Cs symmetry), which is a prerequisite in lamellar structures. The interdependence of bond lengths and angles within N(SO2C)2 and HN(SO2C)2 moieties is substantiated. In 6 – 8 , the [DA18C6]2⊕ macrocycles exhibit the well‐known “biangular” Ci conformation and are connected to two symmetry related anions by N–H…O hydrogen bonds; structures 4 and 3 respectively display O–H…N bonded cation‐anion pairs or C(O)–O–H…O=S mediated anion chains. Weak hydrogen bonds C–H…O are observed in all the crystal packings. The hitherto unreported amines HN(Q‐4‐X)2, where X is C(O)OMe or C(O)NH2, were obtained by treating the corresponding dicarboxylic acid with OSCl2 to form the bis(acyl chloride) and subjecting the latter to methanolysis or ammonolysis.  相似文献   

20.
Structures of Ionic Di(arenesulfonyl)amides. 3. Four Sodium Di(arenesulfonyl)amides: Lamellar Layers Exhibiting Short C–H…O(nitro), C–H…F–C, or C–I…I–C Interlayer Contacts Low‐temperature X‐ray crystal structures are reported for NaN(SO2C6H4‐4‐X)2 · n H2O, where X = NO2 and n = 3 ( 1 , monoclinic, space group P21, Z = 2), X = F and n = 3 ( 2 , monoclinic, P21/c, Z = 4), X = F and n = 1 ( 3 , orthorhombic, Pccn, Z = 8), or X = I and n = 1 ( 4 , monoclinic, P21/c, Z = 4). The four compounds are examples of layered inorgano‐organic solids where the inorganic component is comprised of metal cations, N(SO2)2 groups and H2O molecules and the outer regions are formed by the 4‐substituted phenyl rings of the folded anions. In the two‐dimensional coordination networks, the cations adopt either an octahedral [Na(O–S)2(OH2)4] ( 1 , 2 ) or a distorted monocapped octahedral [NaN(O–S)4(OH2)2] ( 3 , 4 ) environment. Taking into account the differing crystal symmetries within the two pairs of compounds, it is remarkable that the trihydrates 1 / 2 and the monohydrates 3 / 4 each display chemically identical and nearly isometric Na–O or Na–O/N networks. In the crystal packings, parallel layers are connected through weak hydrogen bonds C–H…O(nitro) ( 1 ) or C–H…F ( 2 , 3 ), or through short “type I” I…I contacts ( 4 ). There is good evidence that the strikingly distinct crystal symmetries in the halogenated homologues 3 / 4 are determined by the specific complementarity requirements of the interlayer binding centres.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号