首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A drift-type phase transfer catalyst, cryptand-22, adsorbed on poly(styrene/diviny benzene)-sulfonic resin was prepared and applied to catalyze the reduction of ketones, e.g., acetophenone, benzophenone and benzaldehyde with NaBH4 as a reducing agent. Before the reaction, cryptand-22 was adsorbed on the sulfonic resin with ion-pairing, resin-SO3? +NH-cryptand-22. The ion-pairs can be destroyed by adjusting the basicity of the reaction solution with NaOH and the cryptand can be released from the resin into the reaction solution as a homogeneous catalyst during the reaction period. After the reaction, the cryptand catalyst can be readsorbed on the resin by adjusting the acidity of the solution with HCl and can be readily recovered by filtration like a heterogeneous catalyst. The draft-type cryptand catalyst exhibited better catalytic ability than some common crown ethers, e.g., 15-crown-5, benzo-15-crown-5, 12-crown-4 and dibenzo-18-crown-6 for the reduction of acetophenone with NaBH4. Effects of solvents, pH of solutions, concentration of the catalyst, reducing agents and resin property on the reduction of ketones were investigated and discussed. The reaction mechanism of the cryptand catalyzed reduction was also studied.  相似文献   

2.
A novel perfluorinated liquid crystal 4′-(2,2,3,3,4,4,5,5,6,6,7,7,8,8,8-pentadecafluorooctanoyloxy)biphenyl-4-yl undec-10-enoate (PFOBU) was synthesized, which exhibited smectic C phase. Several liquid crystalline polymers (PI–PVI) were synthesized by use of poly(methylhydrogeno)siloxane, PFOBU, and cholesteryl 3-(4-allyloxy-phenyl)-acryloate. The chemical structures and liquid crystalline (LC) properties of the monomers and polymers, and some ferroelectric properties of the chiral smectic C (SC*) phase were characterized by use of various experimental techniques. The effect of perfluorocarbon chains on phase behaviors of the fluorinated LC polysiloxanes was studied as well. PI and PII showed single chiral nematic (N*) mesophase when they were heated and cooled, but PIII, PIV, PV, and PVI containing more perfluorocarbon chain units exhibited SC* phase besides N* mesophase. Introduction of perfluorocarbon chain containing mesogens to the chiral cholesteryl-containing polymer systems resulted in a SC* mesophases, indicating that the fluorophobic effect could lead to microphase segregation and modifications of smectic mesophases from the chiral nematic phase.  相似文献   

3.
A novel variant of an iridium‐based organometallic catalyst was synthesized and used to enhance the NMR signals of pyridine in a heterogeneous phase by immobilization on polymer microbead solid supports. Upon administration of parahydrogen (pH2) gas to a methanol mixture containing the HET‐SABRE catalyst particles and the pyridine, up to fivefold enhancements were observed in the 1H NMR spectra after sample transfer to high field (9.4 T). Importantly, enhancements were not due to any residual catalyst molecules in solution, thus supporting the true heterogeneity of the SABRE process. Further significant improvements may be expected by systematic optimization of experimental parameters. Moreover, the heterogeneous catalyst is easy to separate and recycle, thus opening a door to future potential applications varying from spectroscopic studies of catalysis, to imaging metabolites in the body without concern of contamination from expensive and potentially toxic metal catalysts or accompanying organic molecules.  相似文献   

4.
Poly(octadecyl acrylate)-grafted silicas were prepared by surface-initiated atom transfer radical polymerization (ATRP). Initially, undecyl ester and allyl ester-based ATRP initiators were synthesized and then immobilized on silica. The surface-initiated ATRP of octadecyl acrylate was carried out from the initiator-grafted silicas using copper(I) bromide and N,N,N,N′,N′′-pentamethyldiethylenetriamine as catalyst precursors to produce poly(octadecyl acrylate)-grafted silicas, Sil-C11-ODAn (obtained from undecyl ester) and Sil-C3-ODAn (originated from allyl ester), respectively. Both Sil-C11-ODAn and Sil-C3-ODAn were characterized by DRIFT, suspension-state 1H NMR, solid-state 13C CP/MAS NMR spectroscopies, thermogravimetric analysis (TGA), elemental analysis and differential scanning calorimetry (DSC) measurements. Suspension-state 1H NMR, solid-state 13C CP/MAS NMR and DSC analyses suggest that Sil-C11-ODAn demonstrated more ordered structure than Sil-C3-ODAn. In this paper, it is also described that for ordering of the polymer phase is accompanied by the selectivity increase for the separation of poly cyclic aromatic hydrocarbons (PAHs) in RP-HPLC.  相似文献   

5.
Di‐ and triblock copolymers of styrene and butyl acrylate with controlled molar masses (Mn up to ≈ 105) were sequentially prepared by radical atom transfer polymerization in a homogeneous medium using chlorine end capped polymers as initiators and the copper(I) chloride/bipyridine complex as catalyst, in the presence of dimethylformamide. Random poly(styrene‐co‐butyl acrylate) was synthesized and the cross‐over reactions between Cl end capped polystyrene and poly(butyl acrylate) to the opposite monomers were examined.  相似文献   

6.
A series of well‐defined double hydrophilic graft copolymers containing poly(poly(ethylene glycol) methyl ether acrylate) (PPEGMEA) backbone and poly(2‐vinylpyridine) (P2VP) side chains were synthesized by successive single electron transfer living radical polymerization (SET‐LRP) and atom transfer radical polymerization (ATRP). The backbone was first prepared by SET‐LRP of poly(ethylene glycol) methyl ether acrylate (PEGMEA) macromonomer using CuBr/tris(2‐(dimethylamino)ethyl)amine as catalytic system. The obtained homopolymer then reacted with lithium diisopropylamide and 2‐chloropropionyl chloride at ?78 °C to afford PPEGMEA‐Cl macroinitiator. poly(poly(ethylene glycol) methyl ether acrylate)‐g‐poly(2‐vinylpyridine) double hydrophilic graft copolymers were finally synthesized by. ATRP of 2‐vinylpyridine initiated by PPEGMEA‐Cl macroinitiator at 25 °C using CuCl/hexamethyldiethylenetriamine as catalytic system via the grafting‐ from strategy. The molecular weights of both the backbone and the side chains were controllable and the molecular weight distributions kept relatively narrow (Mw/Mn ≤ 1.40). pH‐Responsive micellization behavior was investigated by 1H NMR, dynamic light scattering, and transmission electron microscopy and this kind of double hydrophilic graft copolymer aggregated to form micelles with P2VP‐core while pH of the aqueous solution was above 5.0. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

7.
The polyaddition of bis(3‐ethyl‐3‐oxetanylmethyl) terephthalate (BEOT) with dichlorodiphenylsilane (CPS) using tetrabutylammonium bromide (TBAB) as a catalyst proceeded under mild reaction conditions to afford a polymer containing silicon atoms in the polymer main chain. A poly(silyl ether) (P‐1) with a high molecular weight (Mn = 53,200) was obtained by the reaction of BEOT with CPS in the presence of 5 mol % of TBAB in toluene at 0 °C for 1 h and then at 50 °C for 24 h. The structure of the resulting polymer was confirmed by IR and 1H NMR spectra. Furthermore, it was proved that the polyaddition of certain bis(oxetane)s with dichlorosilanes proceeds smoothly to give corresponding poly(silyl ether)s with TBAB as the catalyst. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 2254–2259, 2000  相似文献   

8.
Ethylene polymerizations were performed using catalyst based on titanium tetrachloride (TiCl4) supported on synthesized poly(methyl acrylate‐co‐1‐octene) (PMO). Three catalysts were synthesized by varying TiCl4/PMO weight ratio in chlorobenzene resulting in incorporation of titanium in different percentage as determined by UV‐vis spectroscopy. The coordination of titanium with the copolymer matrix was confirmed by FTIR studies. The catalysts morphology as observed by SEM was found to be round shaped with even distributions of titanium and chlorine on the surface of catalyst. Their performance was evaluated for atmospheric polymerization of ethylene in n‐hexane using triethylaluminum as cocatalyst. Catalyst with titanium incorporation corresponding to 2.8 wt % showed maximum activity. Polyethylenes obtained were characterized for melting temperature, molecular weight, morphology and microstructure. The polymeric support utilized for TiCl4 was synthesized using activators regenerated by electron transfer (ARGET) Atom Transfer Radical Polymerization (ATRP) of methyl acrylate (MA) and 1‐octene (Oct) with Cu(0)/CuBr2/tris(2‐(dimethylamino)ethyl)amine (Me6TREN) as catalyst and ethyl 2‐bromoisobutyrate (EBriB) as initiator at 80 °C. The copolymer poly(methyl acrylate‐1‐octene; PMO) obtained showed monomodal curve in Gel Permeation Chromatography (GPC) with polydispersity of 1.37 and copolymer composition (1H NMR; FMA) of 0.75. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 7299–7309, 2008  相似文献   

9.
Summary: A novel poly(p‐phenylene vinylene) (PPV)/poly(p‐phenylene ethynylene) (PPE) block‐copolymer was synthesized by a cross‐coupling polycondensation with Pd(PPh3)2Cl2 and a phase‐transfer catalyst, and was confirmed by 1H NMR and IR spectroscopy and elemental analysis. The thermal, electrochemical, and photoluminescent properties of the new copolymer have been investigated. The incorporation of triple bonds into the cyano‐substituted PPV (CN‐PPV) backbone leads to higher oxidation and reduction potentials than poly(2‐methoxy‐5‐(2‐ethylhexyloxy)‐p‐phenylene vinylene) (MEH‐PPV) and CN‐PPV, potentially making the copolymer a good electron‐transporting material for use in a light‐emitting‐diode device.

The cyclic voltammogram of the novel poly(p‐phenylene vinylene) (PPV)/poly(p‐phenylene ethynylene) (PPE) block‐copolymer synthesized here.  相似文献   


10.
Pre-ceramic polymers have previously been shown to be polymeric precursors to silicon carbide, diamond and diamond-like carbon. Here, we report the synthesis of a pre-ceramic polymer, poly(silyne-co-hydridocarbyne), which was electrochemically synthesized from one monomer containing both silicon and carbon in its structure. The polymer is soluble in common solvents such as CHCl3, CH2Cl2 and THF. Since the polymer contains both silyne and carbyne on its backbone, it can be easily converted to silicon carbide upon heating under an ambient inert atmosphere, or to SiO2 under ambient air atmosphere. Poly(silyne-co-hydridocarbyne) was characterized with UV/Vis spectroscopy, FTIR, 1H-NMR, GPC and Raman spectroscopy. Conversion of the polymer to SiC ceramic was accomplished by heating at 1000 and 750°C under an argon atmosphere and characterized with optical microscopy, SEM, X-Ray and Raman spectroscopies.  相似文献   

11.
The calcium salt of mono(hydroxyethoxyethyl)phthalate [Ca(HEEP)2] was synthesized by the reaction of diethylene glycol, phthalic anhydride, and calcium acetate. Calcium‐containing poly(urethane ether)s (PUEs) were synthesized by the reaction of hexamethylene diisocyanate (HMDI) or tolylene 2,4‐diisocyanate (TDI) with a mixture of Ca(HEEP)2 and poly(ethylene glycol) (PEG300 or PEG400) with di‐n‐butyltin dilaurate as a catalyst. A series of calcium‐containing PUEs of different compositions were synthesized with Ca(HEEP)2/PEG300 (or PEG400)/diisocyanate (HMDI or TDI) molar ratios of 2:2:4, 3:1:4, and 1:3:4 so that the coating properties of the PUEs could be studied. Blank PUEs without calcium‐containing ionic diols were also prepared by the reaction of PEG300 or PEG400 with HMDI or TDI. The PUEs were well characterized by Fourier transform infrared, 1H and 13C NMR, solid‐state cross‐polarity/magic‐angle‐spinning 13C NMR, viscosity, solubility, and X‐ray diffraction studies. The thermal properties of the polymers were also studied with thermogravimetric analysis and differential scanning calorimetry. The PUEs were applied as top coats on acrylic‐coated leather, and their physicomechanical properties were also studied. The coating properties of PUEs, such as the tensile strength, elongation at break, tear strength, water vapor permeability, flexing endurance, cold crack resistance, abrasion resistance, color fastness, and adhesive strength, were better than the standard values. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 2865–2878, 2003  相似文献   

12.
Polyethylene–poly(dimethylsiloxane) copolymers were synthesized in solution from an ethylene monomer and an ω‐vinyl poly(dimethylsiloxane) (PDMS) macromonomer at 363 and 383 K with EtInd2ZrCl2/methylaluminoxane as a catalyst. The copolymers obtained were characterized with Fourier transform infrared spectroscopy, 1H and 13C NMR, size exclusion chromatography, and differential scanning calorimetry. The rheological properties of the molten polymers were determined under dynamic shear flow tests at small‐amplitude oscillations, whereas the physical arrangement of the phase domains was analyzed with scanning electron microscopy (SEM)/energy dispersive X‐ray (EDX). The analysis of the catalyst activity and the resulting polymers supported the idea of PDMS blocks or chains grafted to polyethylene. The changes in the rheological behavior and the changes in the Fourier transform infrared and NMR spectra were in agreement with this proposal. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2462–2473, 2004  相似文献   

13.
Series of PTT-b-PEO copolymers with different composition of rigid PTT and PEO flexible segments were synthesized from dimethyl terephthalate (DMT), 1,3-propanediol (PDO), poly(ethylene glycol) (PEG, Mn = 1000 g/mol) in a two stage process involving transesterification and polycondensation in the melt. The weight fraction of flexible segments was varied between 20 and 70 wt%. The molecular structure of synthesized copolymers was confirmed by 1H NMR and 13C NMR spectroscopy. The superstructure of these polymers was characterized by DSC, DMTA, WAXS and SAXS measurements. It was observed that domains of three types can exist in PTT-b-PEOT copolymers: semi-crystalline PTT, amorphous PEO rich phase (amorphous PEO/PTT blended phase) and semi-crystalline PEO phase. Semi-crystalline PEO phase was observed only at temperature below 0 °C for sample containing the highest concentration of PEO segment. The phase structure, thermal and mechanical properties are effected by copolymer composition. The copolymers containing 30÷70 wt% of PEO segment posses good thermoplastic elastomers properties with high thermal stability. Hardness and tensile strength rise with increase of PTT content in copolymers.  相似文献   

14.
The photochemical reaction of polymer containing vinyloxy group (P-1), which was prepared from treating poly(epichlorohydrin) with base using a phase transfer catalyst, was investigated in the presence of a photo-generated cationic catalyst (PGCC). When the polymer with PGCC was irradiated, the vinyloxy group in the polymer disappeared rapidly. The rate of disappearance of the vinyloxy group in P-1 was strongly influenced by its content in the polymer and the kind of PGCC. P-1, containing about 65 mol% of vinyloxy group, had the highest photochemical reactivity, and PGCC with PF6? and SbF6? as counterions showed higher catalytic activity than those with BF4? The photochemical reaction of P-1 involved a number of reactions such as degradation, rearrangement, and crosslinking reaction competitively; however, P-1 with less vinyloxy group than 60 mol% degraded preferentially. These results suggested that P-1 is an excellent photodegradating polymer using PGCC. The thermal degradation of P-1 was also investigated.  相似文献   

15.
The kinetics of the formation of poly(carbosiloxane), as well as of alkyl-substituted poly(siloxane), by Karstedt's catalyst catalyzed hydrosilylation were investigated. Linear poly(carbosiloxane), poly[(1,1,3,3-tetramethyldisiloxanyl)ethylene], (PTMDSE), was obtained by hydrosilylation of 1,3-divinyltetramethyldisiloxane (DVTMDS) and 1,1,3,3-tetramethyldisiloxane (TMDS), while alkyl-substituted poly(siloxane), poly(methyldecylsiloxane), (PMDS), was synthesized by hydrosilylation of poly(methylhydrosiloxane) (PMHS) and 1-decene. To investigate the kinetics of PTMDSE formation, two series of experiments were performed at reaction temperatures ranging from 25 to 56 °C and with catalyst concentrations ranging from 7.0 × 10−6 to 3.1 × 10−5 mol Pt/mol CHCH2. A series of experiments was performed at reaction temperatures ranging from 28 to 48 °C, with catalyst concentrations of 7.0 ×10−6 mol of Pt per mol of CHCH2, when kinetics of PMDS formation was investigated. All reactions were carried out in bulk, with equimolar amounts of the reacting Si H and CHCH2 groups. The course of the reactions was monitored by following the disappearance of the Si H bands using quantitative infrared spectroscopy. The results obtained showed typical first order kinetics for the PTMDSE formation, consistent with the proposed reaction mechanism. In the case of PMDS an induction period occurred at lower reaction temperatures, but disappeared at 44 °C and the rate of Si H conversion also started to follow the first-order kinetics. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 2246–2258, 2007  相似文献   

16.
Well-defined ABC block copolymers consisting of poly(ethylene oxide) monomethylene ether (MPEO) as A block, poly(styrene) (PS) as B block and poly(γ-benzyl-l-glutamate) (PBLG) as C block were synthesized by the combination of atom transfer radical polymerization (ATRP) and click reactions. The bromine-terminated diblock copolymer poly(ethylene oxide) monomethylene ether-block-poly(styrene) (MPEO-PS-Br) was prepared by ATRP of styrene initiated with macro-initiator MPEO-Br, which was prepared from the esterification of MPEO and 2-bromoisobutyryl bromide, and converted into the azido-terminated diblock copolymer MPEO-PS-N3 by simple nucleophilic substitutions in DMF in the presence of sodium azide. Propargyl-terminated PBLGs were synthesized by ring-opening polymerization of γ-benzyl-l-glutamate-N-carboxyanhydride in DMF at room temperature using propargyl amine as an initiator. ABC triblock copolymers MPEO-PS-PBLG with a wide range of number-average molecular weights from 1.55 to 3.75 × 104 and a narrow polydispersity from 1.07 to 1.10 were synthesized via the click reaction of MPEO-PS-N3 and the propargyl-terminated PBLG in the presence of CuBr and 1,1,4,7,7-pentamethyldiethylenetriamine (PMDETA) catalyst system. The structures of these ABC block copolymers and corresponding precursors were characterized by NMR, IR and GPC. The results showed that click reaction was efficient. Therefore, a facile approach was offered to synthesize ABC triblock copolymers composed of crystallizable polymer MPEO, conventional vinylic polymer PS and rod-like α-helix polypeptide PBLG.  相似文献   

17.
1,3‐Bis(4‐hydroxyphenyl)propenone (BHPP) and 3‐(4‐hydroxy‐3‐methoxy phenyl)‐1‐(4‐hydroxyphenyl)propenone (HMPHPP) were used as monomers for preparing photosensitive phosphorus containing polyesters. The photosensitive monomers BHPP and HMPHPP were prepared respectively by refluxing 4‐hydroxybenzaldehyde and 3‐methoxy‐4‐hydroxybenzaldehyde with 4‐hydroxy acetophenone. The polyesters were synthesized by interfacial polycondensation of photosensitive diols with N‐phenylphosphoramidic dichloride using hexadecyltrimethyl ammonium bromide (HDTMAB) as phase‐transfer catalyst. Copolymers were also prepared by incorporating terephthaloyl chloride in the polymer backbone. The synthesized monomers and polymers were characterized by UV, FT‐IR and 1H, 13C and 31P‐NMR spectroscopic techniques. The resulting polymers had inherent viscosities in the range of 0.15–0.51 dL/g and showed good solubility in polar organic solvents. The thermal properties of the polymers were studied by thermogravimetric analysis and differential scanning calorimetry under nitrogen atmosphere. The TGA data revealed that the 10% weight loss occurs at 275–320°C and all the synthesized polymers showed high char residues. DSC studies indicate that these polymers possess Tg in the range of 48 to 64°C. The photosensitive property of the polymers in film and solution state was investigated by ultraviolet spectroscopy. The effect of incorporation of terephthaloyl unit on photocrosslinking and thermal properties of the polymers was also studied.  相似文献   

18.
A series of silicon containing poly(ester imide)s [PEIs] were synthesized using novel vinyl silane diester anhydride (VSEA) and various aromatic and aliphatic dimines by two-step process includes ring-opening polyaddition reaction to form poly(amic acid) and thermal cyclo-dehydration process to obtain poly(ester imide)s. VSEA was synthesized by using dichloro methylvinylsilane and trimellitic anhydride in the presence of K2CO3 by nucleophilic substitution reaction. The PEIs were characterized by FTIR spectroscopy. The thermal properties of PEIs were investigated by using differential scanning calorimetry (DSC) and thermogravimetric analysis (TG) methods. The prepared PEIs showed glass transition temperatures in the range of 320–350°C and their 5% mass loss was recorded in the temperature range of 500–520°C in nitrogen atmosphere. These had char yield in the range of 45–55% at 800°C.  相似文献   

19.
Triazine-based heterogeneous Pd/Cu-bimetallodendrimer Nanoparticle (Pd/Cu-BMDNP) has been synthesized by sequential loading method from palladium containing metallodendrimer (Pd-MD) which was prepared by the reaction of 2,4,6-Triamine-1,3,5-triazine (melamine) with substituted benzoyl chloride using (Ph3P)2PdCl2 in DMSO at 90 °C. SEM and EDX of Pd/Cu-BMDNP showed the nanosized aggregated spherical surface morphology and the presence of Palladium and copper of the NP. Also, the phase was detected as Face Centered Cubic (FCC) structure by XRD analysis. In addition, the average particle size of Pd/Cu bimetallic catalyst was identified as 12–13 nm by TEM investigation. Greater thermal stability of Pd/Cu-BMDNP than Pd-MD was detected from TG and DSC experiments. The Pd-metallodendrimer has been also characterized by IR, 1H NMR, 13C NMR, SEM, EDX, Mass, TG and DSC techniques. The simple recoverability, high reusability, low amount of catalyst loading, negligible amount of catalyst leaching of the heterogeneous Pd/Cu-BMDNP have made more effective catalyst than homogeneous Pd-metallodendrimer for the C–C cross-coupling reaction such as Heck, Glaser, Sonogashira and Suzuki-Miyaura in excellent yields.  相似文献   

20.
Four series of photocrosslinkable-cum-flame retardant poly(benzylidene phosphoramide ester)s were synthesized from bis(4-hydroxy-3-methyoxybenzylidene) acetone, 2,5-bis(4-hydroxy-3-methoxybenzylidene)cyclopentanone, 2,6-bis(4-hydroxy-3- methoxybenzylidene)cyclohexanone and 2,7-bis(4-hydroxy-3-methoxybenzylidene) cycloheptanone with various arylphosphorodichloridates by interfacial polycondensation using a phase transfer catalyst. The resultant polymers were characterized by gpc, FTIR, 1H, 13C and 31P-NMR spectroscopy. Thermal behavior of the polymers was evaluated by differential scanning calorimetry and thermogravimetry. Flame retardant properties were ascertained by Limiting Oxygen Index. The photocrosslinking ability of the polymers was studied by ultraviolet spectroscopy. The crosslinking proceeds via 2π + 2π cycloaddition reaction of the benzylidene groups. The rate of crosslinking decreases with increase in the size of cycloalkanone ring, while the thermal stability increases with increase in the size of the alkanone ring. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 3285–3291, 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号