首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
The removal of excess reagent extracted into an organic phase in the solvent extraction of a metal complex anion with a quaternary ammonium ion is discussed. With a given chelating ligand (HO—R—SO3H), the order of extractability is HO—R—SO3- > M(OR—SO3)n- > X- > -O—R—SO3- when an anion such as nitrate or halide is added. If suitable amounts of the anion are added, only the excess of reagent can be removed. The principle is applied to the extraction with zephiramine of the cobalt complex anion formed with 2-nitroso-1-naphthol-4-sulfonic acid. Micro amounts of cobalt in pure nickel salts were determined spectrophotometrically.  相似文献   

2.
Irradiation of silver azide at λ = 365 nm (I > 1 × 1015 quantum cm?2 s?1) in a vacuum (1 × 10?5 Pa) leads to an increase in the rate of photolysis and photoinduced current and the appearance of a new long-wave region of spectral sensitivity. The photolysis products, silver metal and gaseous nitrogen, are formed in a stoichiometric ratio on the surface of silver azide. The rate constants for silver azide photolysis were determined. Measurements of contact potential difference, current—voltage characteristics, photoelectromotive force, and photocurrent showed that AgN3(A1)—Ag (photolysis product) microheterogeneous systems were formed in silver azide photolysis. The limiting stage of silver azide photolysis is the diffusion of interstitial silver cations to the (TnAgm)0 neutral center.  相似文献   

3.
Na5[CuO2][CO3], Na5[CuO2][SO3], Na5[CuO2][S], and Na5[CuO2][SO4] were obtained as single crystals and powders from reactions of Na2O, Cu2O, and Na2X with X = CO32—, SO32—, S2—, and SO42—, respectively. A redox reaction between CdO and Co metal occurs in the presence of Na2O and Na2X, yielding Na5[CoO2][X] with X = CO32— and S2—. From a mixture of Na2SO4, CdO and Na2O in Ni‐containers we observed the formation of Na5[NiO2][S] single crystals. Single crystals of Na25[CuO2]5[SO4]4[S] can be grown by annealing Na5[CuO2][SO3] at 600 °C, leading to the decomposition of SO32—, yielding SO42— and S2— at 550 °C. The structures have been determined from single crystal data and powder data. All structures contain the isolated complex [MO2]3— in a dumb‐bell like arrangement. The main feature of these compounds is that the anions SO42—, SO32—, CO32— and S2— are not connected to the transition metal. The formation of Na5[CuO2][X] (X = S2—, SO42—, SO32—, CO32—) has been studied by thermal analysis and in situ X‐ray diffraction techniques. Infrared spectra confirm the presence of SO42—, SO32—, and CO32—, respectively, in the structures.  相似文献   

4.
Hg2(CH3SO3)2: Synthesis, Crystal Structure, Thermal Behavior, and Vibrational Spectroscopy Colorless single crystals of Hg2(CH3SO3)2 are formed in the reaction of HgO, Hg, and HSO3CH3. In the monoclinic compound (I2/a, Z = 4, a=883.2(2), b=854.0(2), c=1188.9(2) pm, β = 92.55(2)°, Rall=0.0445) the Hg22+ ion is coordinated by two monodentate CH3SO3 anions. Further contacts Hg‐O occur in the range from 262 to 276 pm and lead to a linkage of the [Hg2(CH3SO3)2] units. The thermal analysis shows that Hg2(CH3SO3)2 decomposes at 300° yielding elemental mercury. The mass numbers of the species evolved lead to the assumtion that SO3, SO2, CO2, CO and H2CO are formed during the reaction. In the IR and the Raman spectrum the typical vibrations of the CH3SO3 ion are observed, the Raman spectrum shows the Hg‐Hg stretching vibration at 177 cm—1 within the Hg22+ ion additionally.  相似文献   

5.
Synthesis and Crystal Structure of CsAu(SO4)2 Light yellow single crystals of CsAu(SO4)2 were obtained upon evaporation of a solution of Au(OH)3 and Cs2SO4 in sulfuric acid (96 % H2SO4). In the crystal structure (monoclinic, P21/c, Z = 4, a = 1029.7(2), b = 893.4(2), c = 901.0(1) pm, β = 111.08(1)°) Au3+ is in square planar coordination of oxygen atoms which belong to four SO4 ions. According to [Au(SO4)4/2] puckered layers are formed which are connected by the Cs+ ions. The latter are surrounded by five chelating and three monodentate sulfate groups leading to a CN of 13.  相似文献   

6.
Preparation of Tetramethylammonium Azidosulfite and Tetramethylammonium Cyanate Sulfur Dioxide‐Adduct, [(CH3)4N]+[SO2N3], [(CH3)4N]+[SO2OCN] and Crystal Structure of [(CH3)4N]+[SO2N3] Tetramethylammonium azide forms with sulfur dioxide an azidosulfite salt. It is characterized by NMR and vibrational spectroscopy and the crystal structure analysis. [(CH3)4N]+[SO2N3] crystallizes in the monoclinic space group P21/c with a = 551.3(1) pm, b = 1095.2(1) pm, c = 1465.0(1) pm, β = 100.63(1)°, and four formula units in the unit cell. The crystal structure possesses a strong S–N interaction between the N3– anions and the SO2 molecules. The S–N distance of 200.5(2) pm is longer than a covalent single S–N bond. The structure is compared with ab initio calculated data. Furthermore an adduct of tetrametylammonium cyanate and sulfur dioxide is reported. It is characterised by NMR and vibrational spectroscopy. The structure is calculated by ab initio methods.  相似文献   

7.
In the title complex, [Cu(N3)2(C15H26N2)], the Cu atom is surrounded by the two N atoms of the chelating (?)‐α‐isosparteine ligand and another two N atoms from the two azide anions, forming a distorted CuN4 tetrahedron. The two azide anions are terminally bound to the CuII atom, and the dihedral angle between the Nsparteine—Cu—Nsparteine and Nazide—Cu—Nazide planes is 50.0 (2)°.  相似文献   

8.
(H3O)Nd(SO4)2     
The crystal structure of oxonium neodymium bis(sulfate), (H3O)Nd(SO4)2, shows a two‐dimensional layered framework assembled from SO4 tetrahedra and NdO9 tricapped trigonal prisms. One independent sulfate group makes four S—O—Nd linkages, while the other makes five such connections to generate an unprecedented anhydrous anionic [Nd(SO4)2] layer. To achieve charge balance, H3O+ cations are inserted between adjacent layers where they participate in hydrogen‐bonding interactions with the sulfate O atoms of adjacent layers.  相似文献   

9.
The characteristic feature of the structure of the title compound, dipotassium bis(sulfito‐κS)mercurate(II) 2.25‐hydrate, is a layered arrangement parallel to (001) where each of the two independent [Hg(SO3)2]2− anions are grouped into centrosymmetric pairs and are surrounded by two K+ cations to give the overall layer composition {K2[Hg(SO3)2]2}2−. The remaining cations and the uncoordinated water molecules are situated between these layers. Within the [Hg(SO3)2]2− anions, the central Hg atoms are twofold coordinated by S atoms, with a mean Hg—S bond length of 2.384 (2) Å. The anions are slightly bent [174.26 (3) and 176.99 (3)°] due to intermolecular O...Hg interactions greater than 2.8 Å. All coordination polyhedra around the K+ cations are considerably distorted, with coordination numbers ranging from six to nine. Although the H atoms of the five water molecules (one with symmetry 2) could not be located, O...O separations between 2.80 and 2.95 Å suggest a system of medium to weak O—H...O hydrogen bonds which help to consolidate the structural set‐up. Differences and similarities between the bis(sulfito‐κS)mercurate(II) anions in the title compound and those in the related salts (NH4)2[Hg(SO3)2] and Na2[Hg(SO3)2]·H2O are discussed.  相似文献   

10.
Studies on electrolytic conductance in dioxane—water mixtures of varying compositions at 30, 35, 40 and 45°C were initiated, in which the variations in the Walden product with solvent composition and temperature were reported and discussed with respect to theories concerning solvent structure and ion—solvent interactions. In the present communication, attempts have been made to evaluate the thermodynamic function (ΔG0t) for the transfer of KCl, KBr, KNO3, KBrO3, KIO3, K2SO4, NaCl, NaBr, NaNO3, NaBrO3, NaIO3 and Na2SO4 from water to respective dioxane + water media, which would give some information regarding ionic solvation.  相似文献   

11.
Synthesis and single crystal X-ray diffraction study were carried for compound {[Cu(C11H16N4)2(N3)](ClO4)} · H2O (I). The structure is molecular, and the Cu2+ ion is in a five-coordinated compressed trigonal bipyramid environment. Copper ion is bound to five N atoms, in which four N atoms are from two chlelating ligands 2-(piperidin-1-ylmethyl)pyridine and the fifth N donor is from a monodentate azido ligand. The complex cations [Cu(C11H16N4)2(N3)]+, the perchlorate anions, and solvent water molecules are further joined into three dimensional supramolecular networks by rich hydrogen bonds including strong O-H…N between solvent water and azide ion and O-H…O between solvent water and perchlorate ion, and weak hydrogen bonds C-H…O, and weak bifurcated hydrogen bonds C-H/C-H…N in which N atom of azide ion serving as bifurcated acceptor and two C-H groups as donors.  相似文献   

12.
Solvolysis of [RhMe(CF3SO3)2(Me3[9]aneN3)] ( 1 ) (Me3[9]aneN3 = 1, 4, 7‐trimethyl‐1, 4, 7‐triazacyclononane) in CH3CN, DMSO or pyrazole (L) leads to substitution of both trifluoromethylsulfonate ligands and formation of the cationic complexes [RhMeL2(Me3[9]aneN3)](CF3SO3)2 3—5 . In contrast, treatment of [RuCl3(Me3[9]aneN3)] ( 2 ) with Ag(CF3SO3) in a 1:3 ratio for 2h in CH3CN leads to formation of the tetranuclear complex [{RuCl3(Me3[9]aneN3)}2Ag2(CF3SO3)(CH3CN)](CF3SO3) · CH3CN ( 6 ) with a novel [(RuCl3)2Ag2] core. More forcing conditions enable the substitution of respectively one or two chloride ligands by CH3CN (reflux 18h) or DMF (85°C, 1h) to afford [RuCl2(CH3CN)(Me3[9]aneN3)](CF3SO3) ( 7 ) and [RuCl(DMF)2(Me3[9]aneN3)](CF3SO3)2 ( 8 ). The heteroleptic sandwich complex [Ru([9]aneS3)(Me3[9]aneN3)](CF3SO3)2 ( 9 ) can be prepared by reduction of 2 with Zn powder in acetone in the presence of 3 equiv. of Ag(CF3SO3), followed by addition of [9]aneS3 (1, 4, 7‐trithiacyclononane). The redox potential E°(Ru3+/Ru2+) of +1.87 V vs NHE for 9 is only —0.12 V lower than that of the homoleptic complex [Ru([9]aneS3)2]2+. Crystal structures are reported for 3 — 9 .  相似文献   

13.
The title compound, [Cu(C2N3)(C12H8N2)2](CF3SO3), is formed by discrete [Cu(phen)2{N(CN)2)}]+ complex cations (phen is 1,10‐phenanthroline) and uncoordinated CF3SO3 anions. The Cu centre is five‐coordinated in the form of a distorted trigonal bipyramid to two phen mol­ecules and one dicyan­amide ligand, which is coordinated through one nitrile N atom in the equatorial plane at a distance of 1.990 (2) Å. The two axial Cu—N distances are similar (mean 1.993 Å) and are substantially shorter than the two equatorial Cu—N bonds (mean 2.125 Å).  相似文献   

14.
Hexakis(N—allylthiourea)tetracopper(I) Tetratrifluoromethanesulfonate, [Cu4{CH2=CHCH2NHC(S)NH2}6](CF3SO3)4 (sp.gr.P21/n, a = 13.5463(8), b = 24.129(2), c = 19.128(1)Å, β = 108.053(6)°, Z = 4, R = 0.0440 for 13548 unique reflections) was obtained by reduction of Cu(CF3SO3)2 with excess of N—allylthiocarbamide in benzene medium. Four crystallographical independent Cu atoms possess trigonal environment of three S atoms of CH2=CHCH2NHC(S)NH2 moiety and form Cu4S64+ adamantane—like fragments. The latteres are connected with CF3SO3 anions via (C)—H···F hydrogen bonds.  相似文献   

15.
[(SO3)Co(cyclam)(NCS)] and [(SO3)Co(cyclam)-NCS-Ru(NH3)4(NCS)](BF4) complexes were synthesized and characterized by means of X-ray diffraction, electrochemistry, elemental analysis, and spectroscopic techniques. Crystallographic and FTIR data indicated NCS ligand is coordinated to Co through the nitrogen atom in the monomer species. Electrochemistry and FTIR data of the material isolated after reductive electrolysis of [(SO3)Co(cyclam)(NCS)] hint that NCS and SO32− are released thus forming [Co(cyclam)(L)2]2+, where L is solvent molecules. The formation of the heterobimetallic mixed-valence complex induced a thermodynamic stabilization of Co and Ru metal atoms in the oxidized and reduced states, respectively. According to the Robin and Day classification, a Class II system with a comproportionation constant of 5.78 × 106 is suggested for the mixed-valence complex based on the electrochemical and UV-Vis-NIR results.  相似文献   

16.
Complex Chemistry of Reactive Organic Compounds. XLV. Organometallic Methanediazo Complexes: Protonation and Cycloaddition The reactions of the methanediazo tungsten complex (η5-C5H5)W(CO)2(N2CH3) ( 1 ) with protic acids are strongly governed by solvent effects: while trifluoromethylsulfonic acid induces clean protonation with formation of the ionic derivative [(η5-C5H5)W(CO)2(HN2CH3)]+CF3SO3? ( 3 ) when diethylether is used as a solvent, compound 4 is formed in the presence of acetonitril which latter solvent has good coordination capabilities itself. Compound 4 originates from a novel type of cycloaddition reaction in which the protonated species of composition [(η5-C5H5)W(CO)(CH3CN)(HN2-CH3)]+CF3SO3? is involved. Complete elimination of the nitrogeneous ligand ensemble with concomitant formation of the halogen complex (η5-C5H5)W(CO)2Br3 ( 5 ) occurs upon treatment of 1 with hydrogen bromide.  相似文献   

17.
In streptidinium sulfate monohydrate {systematic name: 1,1′‐[(1S,3R,4S,6R)‐2,4,5,6‐tetrahydroxycyclohexane‐1,3‐diyl]diguanidinium sulfate monohydrate}, C8H20N6O42+·SO42−·H2O, at 100 (2) K, the components are arranged in double helices based on hydrogen bonds. One helix contains streptidinium cations and the other contains disordered sulfate anions and solvent water molecules. The helices are linked into a three‐dimensional hydrogen‐bonded network by O—H...O and N—H...O hydrogen bonds.  相似文献   

18.
The crystal structures of mono‐ and dinuclear CuII trifluoromethanesulfonate (triflate) complexes with benzyldipicolylamine (BDPA) are described. From equimolar amounts of Cu(triflate)2 and BDPA, a water‐bound CuII mononuclear complex, aqua(benzyldipicolylamine‐κ3N ,N′ ,N ′′)bis(trifluoromethanesulfonato‐κO )copper(II) tetrahydrofuran monosolvate, [Cu(CF3SO3)2(C19H19N3)(H2O)]·C4H8O, (I), and a triflate‐bridged CuII dinuclear complex, bis(μ‐trifluoromethanesulfonato‐κ2O :O ′)bis[(benzyldipicolylamine‐κ3N ,N′ ,N ′′)(trifluoromethanesulfonato‐κO )copper(II)], [Cu2(CF3SO3)4(C19H19N3)2], were synthesized. The presence of residual moisture in the reaction medium afforded water‐bound complex (I), whereas dinuclear complex (II) was synthesized from an anhydrous reaction medium. Single‐crystal X‐ray structure analysis reveals that the CuII centres adopt slightly distorted octahedral geometries in both complexes. The metal‐bound water molecule in (I) is involved in intermolecular O—H…O hydrogen bonds with triflate ligands and tetrahydrofuran solvent molecules. In (II), weak intermolecular C—H…F(triflate) and C—H…O(triflate) hydrogen bonds stabilize the crystal lattice. Complexes (I) and (II) were also characterized fully using FT–IR and UV–Vis spectroscopy, cyclic voltammetry and elemental analysis.  相似文献   

19.
Detailed solution‐NMR studies on the distorted ruthenium hydride complex [RuH(η6‐toluene)(Binap)](CF3SO3) (2) are reported. NOE‐spectroscopy, together with low‐temperature 1H and 31P NMR data, reveals restricted rotation around a P—C bond for a specific axial P—phenyl ring with the activation energy determined via simulation. From 19F, 1H HOESY data, the approach of the triflate anion relative to the hydride ligand is established. Comparison of the quadrupole coupling constant CQF from both solution‐ and solid‐state MAS‐NMR on the deuteride [RuD(η6‐benzene)(Binap)](CF3SO3) (1‐D) provide information on the nature of the Ru—H bond. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

20.
Two immeseible solvents are brought in contact, the first containing a polymerization catalyst which is insoluble in the second solvent which does not the catalyst but contains a monomer which, in turn, is insoluble in the first solvent. At an appropiate temperature, polymerization occurs in the second solvent, initiated principally by free radicals escaping may be evaluated. Thus (CH3)2C(CN) escapes from toluene to water at 5% and SO4? from water to toluene at 0.06%. Dispersion agents generally diminish this yield. But it seems that SO4? reacts with the agent retained at the interface, producing a new free radical better able to escape to the organic phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号