共查询到20条相似文献,搜索用时 14 毫秒
1.
Sulfinylamide Metathesis and Nitrene Transfer at Complexes of Hexavalent Molybdenum and Tungsten Protolysis of tungsten hexachloride with tosyl amide offers a direct access to [W(NTos)2Cl2]n ( 1 a) . In presence of donor ligands coordination polymer 1 a can be converted into molecular complexes, e. g. [W(NTos)2Cl2(dme)] ( 1 b ), [W(NTos)2Cl2(PMe3)2] ( 1 c ) and [W(NTos)2Cl2(4,4′-Me2bipy)] ( 1 d ). The synthesis of the homologous molybdenum compound [Mo(NTos)2Cl2]n ( 2 a) can be achieved via metathesis of [Mo(O)2Cl2]n with sulfinyl amide Tos-NSO. An attempt to synthesize a molybdenum phosphine complex in an analogous manner as 1 c , but starting from 2 a or its base adduct [Mo(NTos)2Cl2(dme)] ( 2 b ), leads to nitrene transfer to the phosphine. Me3P=NTos can be detected and the d2 molybdenum complex [Mo(NTos)Cl2(PMe3)3] ( 3 ) is isolated. 3 is characterized by a crystal structure analysis. In phosphine complex 1 c , a similar nitrene abstraction is inhibited, in contrast 1 d is reacting with PMe3 under nitrene abstraction to yield [W(NTos)Cl2(4,4′-Me2bipy)(PMe3)2] ( 4 ). This observation is in accord with a nitrene transfer induced via direct attack of the phosphine on the nitrogen atom of 1 d . 相似文献
2.
Diimido, Imido Oxo, Dioxo, and Imido Alkylidene Halfsandwich Compounds via Selective Hydrolysis and α—H Abstraction in Molybdenum(VI) and Tungsten(VI) Organyl Complexes Organometal imides [(η5‐C5R5)M(NR′)2Ph] (M = Mo, W, R = H, Me, R′ = Mes, tBu) 4 — 8 can be prepared by reaction of halfsandwich complexes [(η5‐C5R5)M(NR′)2Cl] with phenyl lithium in good yields. Starting from phenyl complexes 4 — 8 as well as from previously described methyl compounds [(η5‐C5Me5)M(NtBu)2Me] (M = Mo, W), reactions with aqueous HCl lead to imido(oxo) methyl and phenyl complexes [(η5‐C5Me5)M(NtBu)(O)(R)] M = Mo, R = Me ( 9 ), Ph ( 10 ); M = W, R = Ph ( 11 ) and dioxo complexes [(η5‐C5Me5)M(O)2(CH3)] M = Mo ( 12 ), M = W ( 13 ). Hydrolysis of organometal imides with conservation of M‐C σ and π bonds is in fact an attractive synthetic alternative for the synthesis of organometal oxides with respect to known strategies based on the oxidative decarbonylation of low valent alkyl CO and NO complexes. In a similar manner, protolysis of [(η5‐C5H5)W(NtBu)2(CH3)] and [(η5‐C5Me5)Mo(NtBu)2(CH3)] by HCl gas leads to [(η5‐C5H5)W(NtBu)Cl2(CH3)] 14 und [(η5‐C5Me5)Mo(NtBu)Cl2(CH3)] 15 with conservation of the M‐C bonds. The inert character of the relatively non‐polar M‐C σ bonds with respect to protolysis offers a strategy for the synthesis of methyl chloro complexes not accessible by partial methylation of [(η5‐C5R5)M(NR′)Cl3] with MeLi. As pure substances only trimethyl compounds [(η5‐C5R5)M(NtBu)(CH3)3] 16 ‐ 18 , M = Mo, W, R = H, Me, are isolated. Imido(benzylidene) complexes [(η5‐C5Me5)M(NtBu)(CHPh)(CH2Ph)] M = Mo ( 19 ), W ( 20 ) are generated by alkylation of [(η5‐C5Me5)M(NtBu)Cl3] with PhCH2MgCl via α‐H abstraction. Based on nmr data a trend of decreasing donor capability of the ligands [NtBu]2— > [O]2— > [CHR]2— ? 2 [CH3]— > 2 [Cl]— emerges. 相似文献
3.
[MoN(NPPh3)3] – a Monomeric Nitrido Complex of Molybdenum [MoN(NPPh3)3] ( 1 ) has been prepared from [MoCl3(N3S2)]2 and LiNPPh3 in toluene suspension in good yields. From n-hexane/dichloromethane solutions 1 · 2 CH2Cl2 crystallizes as colourless single crystals, which were suitable for a crystal structure determination. 1 forms monomeric molecules with a Mo≡N distance of 166.6 pm for the nitrido ligand, which corresponds to a triple bond, and MoN-bonds of 193.6 pm on average of the NPPh3–-ligands, corresponding to shortened single bonds. 相似文献
4.
New Phosphoraneiminato Complexes of Molybdenum and Tungsten. Crystal Structures of [(μ‐S2N2){MoCl4(NPPh3)}2], [Mo(NPPh3)4][BF4]2, [W(S)2(NPPh3)2], and [Ph3PNH2]+[SCN]– The binuclear molybdenum(V)phosphoraneiminato complex [(μ‐S2N2){MoVCl4(NPPh3)}2] ( 1 ) has been prepared by the reaction of the chlorothionitreno complex [MoVICl4(NSCl)]2 with Me3SiNPPh3 in dichloromethane forming green crystals. The temperature dependent magnetic susceptibility in the range of 2–30 K shows ideal behaviour according to the Curie law with a magnetic moment of 1.60 B.M. According to the crystal structure determination 1 forms centrosymmetric molecules in which the molybdenum atoms are connected by the nitrogen atoms of the S2N2 molecule. In trans‐position to it the nitrogen atoms of the phosphoraneiminato groups (NPPh3–) are coordinated with Mo–N bond lengths of 171(1) pm. The tetrakis(phosphoraneiminato) complex [Mo(NPPh3)4]‐ [BF4]2 ( 2 ) has been obtained as colourless crystal needles by the reaction of MoN(NPPh3)3 with boron trifluoride etherate in toluene solution. In the dication the molybdenum atom is tetrahedrally coordinated by the nitrogen atoms of the (NPPh3–) groups with Mo–N bond lengths of 179,8–181,0(3) pm. The dithio‐bis(phosphoraneiminato) tungsten complex [W(S)2(NPPh3)2] ( 3 ) is formed as yellow crystals as well as [Ph3PNH2]+[SCN]– ( 4 ) from the reaction of WN(NPPh3)3 with carbon disulfide in tetrahydrofurane in the presence of traces of water. 3 has a monomeric molecular structure with tetrahedrally coordinated tungsten atom with bond lengths W–S of 214.5(5) pm and W–N of 179(1) pm. In the structure of 4 the thiocyanate ions are associated by hydrogen bonds of the NH2 group of the [Ph3PNH2]+ ion to give a zigzag chain. 1 : Space group Pbca, Z = 4, lattice constants at –80 °C: a = 1647.9(3), b = 1460.8(2), c = 1810.4(4) pm; R1 = 0.0981. 2 : Space group P1, Z = 2, lattice constants at –80 °C: a = 1162.5(1), b = 1238.0(1), c = 2346.2(2) pm; α = 103.14(1)°, β = 90.13(1)°, γ = 97.66(1)°; R1 = 0.0423. 3 : Space group Fdd2, Z = 8, lattice constants at –80 °C: a = 3310.1(4), b = 2059.7(2), c = 966,7(1) pm; R1 = 0.0696. 4 : Space group P212121, Z = 4, lattice constants at –80 °C: a = 1118.4(1), b = 1206.7(1), c = 1279.9(1) pm; R1 = 0.0311. 相似文献
5.
Crystal Structure of the Molybdenum(V) Complex [MoCl3(NtBu)(H2NtBu)]2 · 1/2 C7H8 Green moisture sensitive single crystals of [MoCl3(NtBu)(H2NtBu)]2 ( 1 · 1/2 C7H8) have been prepared from molybdenum pentachloride with Me2Si(HNtBu)2 in toluene solution; they were suitable for a crystal structure determination. 1 · 1/2 C7H8: Space group P 1, Z = 2, lattice dimensions at –83 °C: a = 696.9(1), b = 1470.9(2), c = 1579.0(2) pm, α = 96.673(13)°, β = 92.014(14)°, γ = 94.852(14)°, R = 0.0321. 1 forms centrosymmetric molecules in which the molybdenum atoms are linked by two μ‐Cl‐bridges with MoCl bond lengths of 245.7 and 270.2 pm in average of the two crystallographically independent individuals. The longer MoCl bond is in trans‐position to the nitrogen atom of the imido ligand (MoN distance 169.0 pm, MoNC bond angle 167.0° in average). 相似文献
6.
Achim Müller Michael Römer Christian Römer Uta Reinsch-Vogell Hartmut Bögge Uwe Schimanski 《Monatshefte für Chemie / Chemical Monthly》1985,116(6-7):711-717
The synthesis and crystal structures of the compounds [PPh
4]2[W2S12]·0.5DMF, [PPh
4]2[W2O2S10]·0.5DMF, [PPh
4]2[W2S10]··0.5DMF, [PPh
4][NEt
4][Mo2OS7]·CH3CN, and [PPh
4]2[Mo2O2S10] are reported. 相似文献
7.
Michael R. Kunze Dirk Steinborn Kurt Merzweiler Christoph Wagner Joachim Sieler Rudolf Taube Prof. Dr. 《无机化学与普通化学杂志》2007,633(9):1451-1463
The tris(2,4‐dimethylpentadienyl) complexes [Ln(η5‐Me2C5H5)3] (Ln = Nd, La, Y) are obtained analytically pure by reaction of the tribromides LnBr3·nTHF with the potassium compound K(Me2C5H5)(thf)n in THF in good yields. The structural characterization is carried out by X‐ray crystal structure analysis and NMR‐spectroscopically. The tris complexes can be transformed into the dimeric bis(2,4‐dimethylpentadienyl) complexes [Ln2(η5‐Me2C5H5)4X2] (Ln, X: Nd, Cl, Br, I; La, Br, I; Y, Br) by reaction with the trihalides THF solvates in the molar ratio 2:1 in toluene. Structure and bonding conditions are determined for selected compounds by X‐ray crystal structure analysis and NMR‐spectroscopically in general. The dimer‐monomer equilibrium existing in solution was investigated NMR‐spectroscopically in dependence of the donor strength of the solvent and could be established also by preparation of the corresponding monomer neutral ligand complexes [Ln(η5‐Me2C5H5)2X(L)] (Ln, X, L: Nd, Br, py; La, Cl, thf; Br, py; Y, Br, thf). Finally the possibilities for preparation of mono(2,4‐dimethylpentadienyl)lanthanoid(III)‐dibromid complexes are shown and the hexameric structure of the lanthanum complex [La6(η5‐Me2C5H5)6Br12(thf)4] is proved by X‐ray crystal structure analysis. 相似文献
8.
Oxo-phosphoraneiminato Complexes of Molybdenum and Tungsten. Crystal Structures of [Mo(O)2(NPPh3)2] and [WO(NPPh3)3]2[W6O19] The dioxo-phosphoraneiminato complexes [Mo(O)2(NPPh3)2] ( 1 ) and [W(O)2(NPPh3)2] ( 2 ) originate from hydrolysis of the nitrido complexes [MN(NPPh3)3] (M = Mo, W). They form colourless crystals, which are characterized by IR and NMR spectroscopy as well as by mass spectrometry. According to the crystal structure analysis of 1 (space group Fdd2, Z = 8; lattice dimensions at –83 °C: a = 1953.3(1), b = 3275.8(3), c = 953.4(1) pm) there are monomeric molecules with tetrahedrally coordinated molybdenum atoms. The distances MoO of 171.2 pm and MoN of 185.9 pm correspond to double bonds. In dichloromethane solution 2 undergoes further hydrolysis with colourless crystals of [WO(NPPh3)3]2[W6O19] ( 3 ) originating, which are characterized crystallographically (space group Pbcn, Z = 4; lattice dimensions at –50 °C: a = 3225.1(6), b = 1803.6(3), c = 1811.9(3) pm). 3 consists of cations [WO(NPPh3)3]+ with tetrahedrally coordinated tungsten atoms and of the known [W6O19]2– anions. The tungsten atoms of the cations show distances WO of 171.8 pm and WN of 182 pm which correspond to double bonds as in 1 . 相似文献
9.
Molybdenum and Tungsten Complexes with MNS Sequences. Crystal Structures of [MoCl3(N3S2)(1,4‐dioxane)2] and [Mo2Cl2(μ‐NSN)2(μ‐O)(NCMe3)(OCMe3)2]2 The cyclo‐thiazeno complexes [Cl3MNSNSN]2 of molybdenum and tungsten react with 1,4‐dioxane in dichloromethane suspension to give the binuclear donor‐acceptor complexes [μ‐(1,4‐dioxane){MCl3(N3S2)}2] which are characterized by IR spectroscopy. With excess 1,4‐dioxane the molybdenum compound forms the complex [MoCl3(N3S2)(1,4‐dioxane)2] in which, according to the crystal structure determination, one of the dioxane molecules coordinates at the molybdenum atom, the other one at one of the sulfur atoms of the cyclo‐thiazeno ring. The μ‐(NSN2–) complex [Mo2Cl2(μ‐NSN)2(μ‐O)(NCMe3)(OCMe3)2]2 has been obtained by the reaction of [MoN(OCMe3)3] with trithiazyle chloride in carbontetrachloride solution. According to the crystal structure determination this compound forms centrosymmetric dimeric molecules via two of the nitrogen atoms of two of the μ‐(NSN) groups to give a Mo2N2 fourmembered ring. [MoCl3(N3S2)(1,4‐dioxane)2]: Space group P21/c, Z = 4, lattice dimensions at –70 °C: a = 1522.9(2); b = 990.3(1); c = 1161.7(1) pm; β = 106.31(1)°, R1 = 0.0317. [Mo2Cl2(μ‐NSN)2(μ‐O)(NCMe3)(OCMe3)2]2 · 4 CCl4: Space group P21/c, Z = 2, lattice dimensions at –83 °C: a = 1216.7(1); b = 2193.1(2); c = 1321.8(1) pm; β = 98.23(1)°; R1 = 0.0507. 相似文献
10.
Stericly Shielded Nitrido Complexes of Molybdenum and Tungsten. The Crystal Structures of [MoN(NPh2)3] and [W4N4(NPh2)6(OnC4H9)2] The reactions of MoNCl3 and WNCl3, respectively, with lithium diphenylamide in tetrahydrofurane produce the monomeric nitrido complexes MN(NPh2)3 with CN = 4 at the metal atoms. In the presence of lithium-n-butyl LiNPh2 and WNCl3 also form the tetrameric nitrido complex [W4N4(NPh2)6(OnC4H9)2] which contains WV and WVI. The compounds are characterized by their i.r. spectra, by X-ray structural analysis, and, partially, by 1H and 13C n.m.r. spectroscopy. MoN(NPh2)3: Space group P1 , Z = 2, 4060 observed independent reflexions, R = 0.031. Lattice dimensions at 20°C: a = 956.2(4) pm, b = 1 015.9(2) pm, c = 1 598.1(3) pm; α = 79.06(2)°, β = 85.67(3)°, γ = 82.57(3)°. The compound forms monomeric molecules with Mo?N bond lengths of 163.4 pm and mean Mo? NPh2 distances of 199.2 pm. [W4N4(NPh2)6(OnC4H9)2]: Space group P21/n, Z = 2, 1903 observed independent reflexions, R=0.039. Lattice parameters at 19°C: a = 1582.2(3) pm, b = 1182.4(2) pm, c = 2053.3(4) pm; β = 103.77(2)°. The compound forms centrosymmetric molecules, in which the central W–W dumb-bell (bond length 253.5 pm) is linked by the nitrido ligands of two WN2(NPh2)2=units in a T shaped order of the N-atoms. 相似文献
11.
Edwin Gauch Adelheid Hagenbach Joachim Strhle Armin Dietrich Bernhard Neumüller Kurt Dehnicke 《无机化学与普通化学杂志》2000,626(2):489-493
Syntheses and Crystal Structures of the Nitrido Complexes [MoNCl3(MeCN)]4 and [MoNCl2(bipy)]4 [MoNCl3(MeCN)]4 ( 1 ) is obtained by the reaction of MoCl4(MeCN)2 with Me3SiN3 in CH2Cl2 as a sparingly soluble and water sensitive red compound. It crystallizes as 1 · 3 CH2Cl2 in the triclinic space group P 1 with a = 889.7(1), b = 1004.8(1), c = 1270.4(2) pm; α = 71.69(1)°; β = 73.63(1)°; γ = 86.32(1)°, and Z = 1. It forms centrosymmetric tetranuclear complexes, in which the Mo atoms are connected by asymmetric and linear nitrido bridges with distances Mo–N of 167.5 and 214.3 pm. The acetonitrile molecules are coordinated with a long bond length Mo–N of 241 pm in trans position to the Mo–N triple bond. The reaction of 1 with 2,2′‐bipyridine in CH2Cl2/THF yields the tetranuclear molybdenum(V) complex [MoNCl2(bipy)]4 ( 2 ) as main product. It crystallizes in the tetragonal space group P42/n with a = 1637.5(2), c = 1018.3(2) pm, and Z = 2. In the tetranuclear complexes with the symmetry S4 linear and asymmetric nitrido bridges connect the Mo atoms to form an almost planar eight membered Mo–N ring with distances Mo–N of 173 and 203 pm. The bipyridine molecules coordinate as chelates in cis and trans position to the Mo–N triple bond. In this case the trans influence causes different Mo–N distances of 219 and 232 pm. 相似文献
12.
Penicillamine Complexes of Nickel, Chromium, and Molybdenum — Structural Particularity and Biological/Medical Relevance The compounds Tl2[NiII(H2O)6][NiII(D-pen)(L-pen)]2[NiII(SCN)2(H2O)4] 1 , Tl[NiII(D-pen)2H] · H2O 2 , Tl[CrIII(D-pen)2] 3 , and Na2[MoO4(pen)2] · 3 CH3OH · 3 H2O 4 have been prepared by the reaction of nickel nitrate (for 1 ), nickel acetate (for 2 ), potassium chromate (for 3 ), and sodium molybdate (for 4 ) with D- and D, L-penicillamine, respectively. They were characterized by single-crystal X-ray structure analysis and other physical methods. Whereas penicillamine acts as a bidentate (N, S)-ligand in 1 and 2 , CrIII (in 3 ), and MoV (in 4 ) are coordinated to the three ligand atoms N, O, and S. The presence of three different types of NiII-complexes a cationic, a neutral, and an anionic one in 1 is remarkable. For crystal data see Inhaltsübersicht. 相似文献
13.
Synthesis, Vibrational Spectra, and Crystal Structure of ( n ‐Bu4N)2[(W6Cl )F ] · 2 CH2Cl2 and 19F NMR Spectroscopic Evidence of the Mixed Cluster Anions [(W6Cl )F Cl ]2–, n = 1–6 The reaction of (n‐Bu4N)2[(W6Cl)Cl] with CF3COOH in dichloromethane gives intermediately a mixture of the cluster anions [(W6Cl)(CF3COO)Cl]2–, n = 1–6. By treatment with NH4F the outer sphere coordinated trifluoracetato ligands are easily substituted and the components of the series [(W6Cl)FCl], n = 1–6 are formed and characterized by their distinct 19F NMR chemical shifts. An X‐ray structure determination has been performed on a single crystal of (n‐Bu4N)2[(W6Cl)F] · 2 CH2Cl2 (orthorhombic, space group Pbca, a = 15.628(4), b = 17.656(3), c = 20.687(4) Å, Z = 4). The low temperatur IR (60 K) and Raman (20 K) spectra are assigned by normal coordinate analysis based on the molecular parameters of the X‐ray determination. The valence force constants are fd(WW) = 1.89, fd(WF) = 2.43 and fd(WCl) = 0.93 mdyn/Å. 相似文献
14.
Martin Göhner Florian Herrmann Prof. Dr. Norbert Kuhn Markus Ströbele 《无机化学与普通化学杂志》2012,638(14):2196-2199
2, 3‐Dihydro‐1, 3‐diisopropyl‐4, 5‐dimethylimidazol‐2‐ylidene ( 1 , Carb) reacts with tin tetrafluoride to give the complex (Carb)2SnF4 ( 3 ). The ligand properties of 1 are discussed in terms of the crystal structure and NMR data of 3 . 相似文献
15.
Kevin J. Coutinho Ron S. Dickson George A. Koutsantonis Brian W. Skelton Allan H. White Prof. Dr. 《无机化学与普通化学杂志》2008,634(4):669-674
Syntheses of the array of heterobimetallic complexes [(OC)3M(μ‐PPh2)2(μ‐O‐C(CHMe(CH2)2PPh2)RhL], M = Cr, Mo, W, L = tBuNC, are described, extending the previous study of the counterpart array for L = CO. A single crystal X‐ray structure determination is reported for the M = Mo adduct, enabling comparison with its previously reported L = CO counterpart, for which an improved redetermination is also reported. In the present complex the tBuNC ligand is found to be much more weakly bound (Rh‐C 2.026(5) Å) than the carbonyl group it displaces (Rh‐C 1.945(2) Å) with concomitant minor impact on the remainder of the rhodium ambience. 相似文献
16.
Harald Krautscheid Eberhard Matern Jolanta Olkowska‐Oetzel Jerzy Pikies Gerhard Fritz 《无机化学与普通化学杂志》2001,627(7):1505-1507
Coordination Chemistry of P‐rich Phosphanes and Silylphosphanes. XXIV. Formation and Structure of [μ‐(1,2 : 2‐η‐tBu2P–P){Mo(CO)2cp′}2] [cp′Mo(CO)2]2 (cp′ = C5H4tBu) reacts with tBu2P–P=P(Me)tBu2 to yield the compound [μ‐(1,2 : 2‐η‐tBu2P–P){Mo(CO)2cp′}2], which crystallizes in the space group P212121 with a = 1202.42(7), b = 1552.48(8), and c = 1765.3(1) pm. 相似文献
17.
Synthesis and Crystal Structure Analysis of NaSrMg2F7, a Fully Fluorinated Compound of the Pyrochlore Family During our research on alkali‐fluorides, the compound NaSrMg2F7 has been prepared by a precipitation reaction of Sr2+, Mg2+ and Na+ with F– for the first time. The powder crystallizes as a single phase in the form of spherical agglomerates ∼0.25 μm in diameter. The compound crystallizes in the space group Fd 3 m (Nr. 227) with lattice parameter a = 10.4379(4) Å. Structural analysis by the Rietveld method was done from X‐ray diffraction data. In agreement with the structure analysis, spectroscopical investigations confirm the presence of two coupled fluoride ions. The crystal structure corresponds to the pyrochlore structure type A2B2X7 with 50% occupation of Sr2+ or Na+ at the A site. 相似文献
18.
Eva Rentschler Werner Massa Stefan Vogler Kurt Dehnicke Dieter Fenske Gerhard Baum 《无机化学与普通化学杂志》1991,592(1):59-72
Halogeno-Nitrosyl Complexes of Molybdenum and Tungsten. Crystal Structures of [Na2(15-Crown-5)2(CH3CN)][MoCl4(NO)2] and [Na(15-Crown-5)]2[MoF4Cl(NO)] MoCl2(NO)2 and WCl2(NO)2, respectively, react with excess sodium fluoride in acetonitrile at room temperature and in the presence of 15-crown-5 to give crystalline mixtures, which consist of the title compounds, respectively of [Na(15-crown-5)]2[WCl4(NO)2] and [Na(15-crown-5)]2[WF4Cl(NO)], and which can be separated by selection. The complexes are characterized by their i.r. spectra, the molybdenum compounds additionally by crystal structure determinations. [Na2(15-crown-5)2(CH3CN)][MoCl4(NO)2]: Space group P21, Z = 2, 5415 independent unique reflexions, R = 0.039. Lattice dimensions at ?10°C: a = 984.3, b = 1231.1, c = 1483.0 pm, β = 105.67°. The compound consists of cations [Ne(l5-crown-5)(CH3CN)]+, in which the sodium ion is surrounded by the five O-atoms of the crown ether and by the N-atom of the acetonitrile molecule, as well as of anions, which form an ion pair {Na(15-crown-5)[MoCl4(NO)2]}?. In the in pairs the sodium ion is coordinated by the five oxygen atoms of the crown ether and by two chlorine atoms of the [MoCI4(NO)2]2? unit. The nitrosyl ligands take the cis-position a t the molybdenum atom which is in a distorted octahedrally fashion. [Na(15-crown-5)]2[MoF4Cl(NO)]. Space group C2/c, Z = 4, 1933 independent unique reflexions, R = 0.078. Lattice dimensions at ?7O°C: D : 1.585.8, b = 1171.5, c = 1771.5 pm, β = 114.91°. The compound forms an ion triple, in which the sodium ions are linked to five oxygen atoms each of the crown ether molecules, and to two F-atoms of the [MoF4Cl(NO)]2? unit. The F-atom which is arranged in trans-position to the nitrosyl ligand coordinates with both sodium ions; thus an unusual T-shaped arrangement results for this F-atom. The sole terminal F-Atom and the Cl-atom are disordered in two positions. 相似文献
19.
Michael P. Batten Allan J. Canty Kingsley J. Cavell Brian W. Skelton Allan H. White 《无机化学与普通化学杂志》2006,632(5):876-878
The complexes [Mo(CO)4(L2‐N,N′)] [L2 = 1‐methylimidazol‐2‐yl(pyridin‐2‐yl)methanone and 1‐benzylimidazol‐2‐yl(1‐phenylaldimine)] have been synthesized from hexacarbonylmolybdenum(0) in order to define the coordination characteristics of the bidentate nitrogen‐donor ligands; the complexes exhibit distorted octahedral coordination for molybdenum(0) and cis‐bidentate ligand configurations. 相似文献
20.
Sr2(OLi2Sr4)[CrN4]2, a Nitridochromate(VI)‐Oxide with Oxygen in Tetragonal‐Bipyramidal Coordination by Lithium and Strontium Green gleaming crystals of Sr2(OLi2Sr4)[CrN4]2 were prepared by reaction of Li, Sr and CrN/Cr2N (approximate 1 : 1 mixture) with flowing nitrogen at 900 °C (molar overall composition Li : Sr : Cr = 6 : 1 : ∼3). The oxygen content results from a leak in the gas supply. The crystal structure was determined by single crystal methods (triclinic; P1; a = 615.87(9) pm, b = 682.50(10) pm, c = 754.30(8) pm, α = 82.302(14)°, β = 75.197(10)°, γ = 70.133(13)°; Z = 1) and contains distorted tetragonal bipyramids (OLi2Sr4)8+ and [CrVIN4]6–‐tetrahedra besides Sr2+. 相似文献