首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1‐Phosphabicyclo[3.2.1]octanes 1‐Phosphabicyclo[3.2.1]octane has been obtained by free‐radical cyclization of (2‐vinyl‐4‐pentenyl)‐phosphane in the presence of AIBN. Another approach to 1‐phosphabicyclo[3.2.1]octanes involves free‐radical cyclization of 2‐methyl‐4‐(2‐propenyl)‐phospholane synthesized by the reaction of [2‐(2‐propenyl)‐4‐pentenyl]‐phosphane with KPH2/[18]crown‐6 in THF. The bicyclic phosphanes are characterized by reactions with CS2, selenium, sulfur, NO, CH3I, and HSO3F, respectively, structural and analytical data as well as 1H, 13C, 31P, 77Se NMR spectral measurements. The steric crowding of the phosphanes as complex ligands has been estimated from 31P–1H coupling constants according to the Tolman model. The configuration of the methyl substituents as well as the conformation of the six‐membered ring were determined by NMR parameters (coupling constants, noe's) and proved by X‐ray crystal structure analysis.  相似文献   

2.
Calculations of nitrogen NMR parameters [chemical shifts δN and indirect nuclear spin–spin coupling constants J(N,N), J(N,13C), J(29Si,N)] of noncyclic azo‐compounds R1 NN R2 (R1, R2 = H, Me, Ph, SiH3, SiMe3) and cyclic azo‐compounds [NNCH2, NN(CH2)3 NN(CH2)2SiH2, and NN(SiH2CH2SiH2)] by density functional theory (DFT) methods [B3LYP/6‐311+G(d,p) level of theory] provide data in reasonable agreement with experimental values. The influence of cis‐ and trans‐geometry is reflected by the calculations, and amino‐nitrenes are also included for comparison. The spin–spin coupling constants are analyzed with respect to contact (Fermi contact term, FC) and non‐ contact contributions (paramagnetic and diamagnetic spin‐orbital terms, PSO and DSO, and spin‐dipole term, SD). Bis(trimethylsilyl)diazene 6a can be generated by an alternative method, using the reaction of bis(trimethylsilyl)sulfur diimide with bis‐ (trimethylsilyl)amino‐trimethylsilylimino‐phosphane. © 2005 Wiley Periodicals, Inc. Heteroatom Chem 16:84–91, 2005; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/hc.20075  相似文献   

3.
Some new phosphoramidates were synthesized and characterized by 1H, 13C, 31P NMR, IR spectroscopy and elemental analysis. The structures of CF3C(O)N(H)P(O)[N(CH3)(CH2C6H5)]2 ( 1 ) and 4‐NO2‐C6H4N(H)P(O)[4‐CH3‐NC5H9]2 ( 6 ) were confirmed by X‐ray single crystal determination. Compound 1 forms a centrosymmetric dimer and compound 6 forms a polymeric zigzag chain, both via ‐N‐H…O=P‐ intermolecular hydrogen bonds. Also, weak C‐H…F and C‐H…O hydrogen bonds were observed in compounds 1 and 6 , respectively. 13C NMR spectra were used for study of 2J(P,C) and 3J(P,C) coupling constants that were showed in the molecules containing N(C2H5)2 and N(C2H5)(CH2C6H5) moieties, 2J(P,C)>3J(P,C). A contrast result was obtained for the compounds involving a five‐membered ring aliphatic amine group, NC4H8. 2J(P,C) for N(C2H5)2 moiety and in NC4H8 are nearly the same, but 3J(P, C) values are larger than those in molecules with a pyrrolidinyl ring. This comparison was done for compounds with six and seven‐membered ring amine groups. In compounds with formula XP(O)[N(CH2R)(CH2C6H5)]2, 2J(P,CH2)benzylic>2J(P,CH2)aliphatic, in an agreement with our previous study.  相似文献   

4.
Some new N‐4‐Fluorobenzoyl phosphoric triamides with formula 4‐F‐C6H4C(O)N(H)P(O)X2, X = NH‐C(CH3)3 ( 1 ), NH‐CH2‐CH=CH2 ( 2 ), NH‐CH2C6H5 ( 3 ), N(CH3)(C6H5) ( 4 ), NH‐CH(CH3)(C6H5) ( 5 ) were synthesized and characterized by 1H, 13C, 31P NMR, IR and Mass spectroscopy and elemental analysis. The structures of compounds 1 , 3 and 4 were investigated by X‐ray crystallography. The P=O and C=O bonds in these compounds are anti. Compounds 1 and 3 form one dimensional polymeric chain produced by intra‐ and intermolecular ‐P=O···H‐N‐ hydrogen bonds. Compound 4 forms only a centrosymmetric dimer in the crystalline lattice via two equal ‐P=O···H‐N‐ hydrogen bonds. 1H and 13C NMR spectra show two series of signals for the two amine groups in compound 1 . This is also observed for the two α‐methylbenzylamine groups in 5 due to the presence of chiral carbon atom in molecule. 13C NMR spectrum of compound 4 shows that 2J(P,Caliphatic) coupling constant for CH2 group is greater than for CH3 in agreement with our previous study. Mass spectra of compounds 1 ‐ 3 (containing 4‐F‐C6H4C(O)N(H)P(O) moiety) indicate the fragments of amidophosphoric acid and 4‐F‐C6H4CN+ that formed in a pseudo McLafferty rearrangement pathway. Also, the fragments of aliphatic amines have high intensity in mass spectra.  相似文献   

5.
2H‐Dibenzo[c.e][1,2]oxaphosphorine 2‐oxide (HDOPO), 2‐(N,N‐diethylamino)‐dibenzo[c.e][1,2]oxaphosphorine 2‐oxide (DEADOPO), and 2‐ethoxy‐dibenzo[c.e][1,2]oxaphosphorine 2‐oxide (EtODOPO) are fully characterized in CDCl3 by 1H, 13C, 31P, and 15N NMR spectroscopy on 800‐ and 500‐MHz instruments. A strategy enabling their unambiguous signal assignment is presented, with special emphasis on 2D 1H,13C HMBC spectra. Additional line‐shape iterations of the aromatic 1H multiplets (ABCDX and ABCDEX spin systems) provided all long‐range nJH,H and nJP,H coupling constants with utmost precision. The experimental results augmented with those of the model compound phenylphosphonous acid clearly demonstrate that nJH,H couplings of the PH proton as well as the nJP,C values do not decrease in a monotonic manner with the number of intervening bonds from the phosphorus atom. This fact may potentially lead signal misassignments, if the analysis starts out from the coupling constants, as it occurred for HDOPO in the recent publication by Wagner et al. (Phosphorus, Sulfur and Silicon, 187, 2012, 781–798). The corrected assignment will be given in the present paper. Finally, the A2M3X or ABM3X type 1H spectral patterns of ethyl groups are also analyzed and explicit equations are derived to evaluate the strongly coupled ABM3X multiplets in EtODOPO.  相似文献   

6.
Optimized shifting and/or scaling factors for calculating one‐bond carbon–hydrogen spin–spin coupling constants have been determined for 35 combinations of representative functionals (PBE, B3LYP, B3P86, B97‐2 and M06‐L) and basis sets (TZVP, HIII‐su3, EPR‐III, aug‐cc‐pVTZ‐J, ccJ‐pVDZ, ccJ‐pVTZ, ccJ‐pVQZ, pcJ‐2 and pcJ‐3) using 68 organic molecular systems with 88 1JCH couplings including different types of hybridized carbon atoms. Density functional theory assessment for the determination of 1JCH coupling constants is examined, comparing the computed and experimental values. The use of shifting constants for obtaining the calculated coupling improves substantially the results, and most models become qualitatively similar. Thus, for the whole set of couplings and for all approaches excluding those using the M06 functional, the root‐mean‐square deviations lie between 4.7 and 16.4 Hz and are reduced to 4–6.5 Hz when shifting constants are considered. Alternatively, when a specific rovibrational contribution of 5 Hz is subtracted from the experimental values, good results are obtained with PBE, B3P86 and B97‐2 functionals in combination with HIII‐su3, aug‐cc‐pVTZ‐J and pcJ‐2 basis sets. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

7.
7‐Oxabenzonorbornadienes derivatives 1 a – d underwent reductive coupling with alkyl propiolates CH3C?CCO2CH3 ( 2 a ), PhC?CCO2Et ( 2 b ), CH3(CH2)3C?CCO2CH3 ( 2 c ), CH3(CH2)4C?CCO2CH3 ( 2 d ), TMSC?CCO2Et ( 2 e ), (CH3)3C?CCO2CH3 ( 2 f ) and HC?CCO2Et ( 2 g ) in the presence of [NiBr2(dppe)] (dppe=Ph2PCH2CH2PPh2), H2O and zinc powder in acetonitrile at room temperature to afford the corresponding 2alkenyl‐1,2‐dihydronapthalen‐1‐ol derivatives 3 a – n with remarkable regio‐ and diastereoselectivity in good to excellent yields. Similarly, the reaction of 7azabenzonorbornadienes derivative 1 e with propiolates 2 a, b and d proceeded smoothly to afford reductive coupling products 2alkenyl‐1,2‐dihydronapthalene carbamates 3 o – p in good yields with high regio‐ and stereoselectivity. This nickel‐catalyzed reductive coupling can be further extended to the reaction of 7oxabenzonorbornene derivatives. Thus, 5,6‐di(methoxymethyl)‐7‐oxabicyclo[2.2.1]hept‐2‐ene ( 4 ) reacted with 2 a and 2 d to furnish cyclohexenol derivatives bearing four cis substituents 5 a and b in 81 and 84 % yield, respectively. In contrast to the results of 4 with 2 , the reaction of dimethyl 7oxabicyclo[2.2.1]hept‐5‐ene‐2,3‐dicarboxylate ( 6 ) with propiolates 2 a – d afforded the corresponding reductive coupling/cyclization products, bicyclo[3.2.1]γ‐lactones 7 a – d in good yields. The reaction provides a convenient one‐pot synthesis of γ‐lactones with remarkably high regio‐ and stereoselectivity.  相似文献   

8.
Naphtholactame as a Ligand Deprotonation of the fluorophore N‐Benz[cd]indol‐2(1H)‐on (= naphtholactame) with NaN(SiMe3)2 yields the naphtholactamate 1 , which is subsequently reacted with the chloro complexes [Ph3PAuCl] and [(Ph3P)2PtCl2]. The mono‐ and disubstitution products [Ph3PAu(C11H6NO)] ( 2 ), [(Ph3P)2PtCl(C11H6NO)] ( 3 ) and [(Ph3P)2Pt(C11H6NO)2] ( 4 ) with one ( 2 , 3 ) or two ( 4 ) metal‐N‐bonds respectively, were isolated. Substitution of chloride in the phosphanes Ph3‐nPCln with 1 leads to the naphtholactamato‐N‐phosphane derivatives Ph3‐nP(C11H6NO)n (n = 3 ( 5 ), 2 ( 6 ), 1 ( 7 )). 7 , which is particularly sensitive towards air oxygen, is readily oxidized to give the corresponding phosphane oxide Ph2P(O)(C11H6NO) ( 8 ). The ligating properties of 5 and 7 have been examined. In a two‐step reaction HAuCl4, C4H8S (= THT) and 7 yield the phosphane complex [{Ph2(C11H6NO)P}AuCl] ( 9 ). Photolytic activation of W(CO)6 in THF and subsequent addition of 5 or 7 surprisingly leads to the tetracarbonyl complexes $[(CO)_{4}\overline{W\{P(C_{11}H_{6}NO)_{2}(C_{11}H_{6}NO)\}]}$/ ( 10 ) and $[(CO)_{4}\overline{W\{PPh_{2}(C_{11}H_{6}NO)\}]}$/ ( 11 ), respectively. Both exhibit a bidentate P, O‐bound naphtholactamatophosphane ligand. The compounds have been characterized by their IR‐, NMR‐ and Mass spectra, compound 11 additionally by a single crystal structure analysis. Theoretical studies on PM3‐level for 5 , including a structure optimization and as well as an NBO analysis, have been carried out.  相似文献   

9.
Two new tris(aryl)phosphane oxides existing as configurationally stable residual enantiomers have been synthesised and their racemates resolved by semipreparative HPLC on a chiral stationary phase (CSP HPLC). One of them, recognised as a conglomerate, could be resolved by fractional crystallisation at a preparative scale level. In this case, the absolute configuration of the propeller‐shaped molecule was determined by anomalous X‐ray scattering. The problem of the correlative assignment of the absolute configuration to all known C3‐symmetric three‐bladed propeller‐shaped molecules existing as stable residual enantiomers is discussed. The configurational stability of the new chiral phosphane oxides and of the corresponding phosphanes was evaluated by CD signal decay kinetics and dynamic 1H NMR spectroscopy. The racemisation barriers in phosphanes were found about 10 kcal mol?1 lower than those found for the corresponding oxides, though geometry and inter‐ring gearing would be very similar in the two series. Configurational stability of residual tris(aryl)phosphanes was found to be influenced by the electronic availability of the phosphorus centre, as evaluated by electrochemical CV experiments.  相似文献   

10.
A new class of bidentate, aza‐based phosphinic amide ligands of the type RN(H)P(?O)(2‐py)2 (2‐py = 2‐pyridyl) was synthesized within minutes via a one‐pot process including Staudinger reaction of an organic azide (RN3) with 2‐pyridylphosphines, followed by partial, unprecedented hydrolysis under loss of one aromatic substituent. The structure of the unusual‐hydrolysis product H2C?CH(CH2)9N(H)P(?O)(2‐py)2 ( 5a ) was characterized by IR, 1H‐ and 31P‐NMR, as well as by X‐ray crystal‐structure analysis (Figure). The tetrahedral P‐atom was found to be surrounded by a trigonal‐pyramidal arrangement of the substituents. To gain insight into the formation of these novel phosphinic amides, a series of intermediate iminophosphoranes, H2C?CH(CH2)9N?P(Ar)n(2‐py)3 ? n (n = 0–3), compounds 1a – 1f , were synthesized, and their hydrolyses were studied. All tested compounds followed the classical hydrolysis route of P?N cleavage under acidic conditions. Sequential hydrolysis to 5a – 5d only occurred under either basic conditions or in wet MeCN as solvent. Notably, H2C?CH(CH2)9N?P(C6H5)(4‐MeO‐2‐py)2 ( 1c ) was hydrolyzed at a much slower rate compared to its analogue 1b lacking the MeO group. On the contrary, the halogenated compounds H2C?CH(CH2)9N?P(4‐X‐C6H4)3 ( 1f,g ) (X = F, Cl) were hydrolyzed at a notably faster rate relative to the non‐halogenated congener 1e (X = H).  相似文献   

11.
Complexes [Me2SnL2 ( I ), Me3SnL ( II ), Et2SnL2 ( III ), n‐Bu2SnL2 ( IV ), n‐Bu3SnL ( V ), n‐Oct2SnL2 ( VI )], where L is (E)‐3‐furanyl‐2‐phenyl‐2‐propenoate, have been synthesized and structurally characterized by vibrational and NMR (1H, 13C and 119Sn) spectroscopic techniques in combination with mass spectrometric and elemental analyses. The IR data indicate that in both the di‐ and triorganotin(IV) carboxylates the ligand moiety COO acts as a bidentate group in the solid state. The 119Sn NMR spectroscopic data, 1J[119Sn,13C] and 2J[119Sn, 1H], coupling constants show a four‐coordinated environment around the tin atom in triorganotin(IV) and five‐coordinated in diorganotin(IV) carboxylates in noncoordinating solvents. The complexes have been screened against bacteria, fungi, and brine‐shrimp larvae to assess their biological activity. © 2008 Wiley Periodicals, Inc. Heteroatom Chem 19:612–620, 2008; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/hc.20488  相似文献   

12.
The coupling constants nJ(77Se31P), n = 1–4, have been measured in the proton-decoupled 31P NMR spectra of a range of diphosphorus selenides and diselenides. 31P–{1H, 31P} and 31P–{1H, 77Se} triple resonance experiments have been used to establish the signs of the coupling constants, and it is found that both the magnitudes and signs depend upon the stereochemical relationship of the coupled nuclei.  相似文献   

13.
A broadband proton–proton‐decoupled CPMG‐HSQMBC method for the precise and direct measurement of long‐range heteronuclear coupling constants is presented. The Zangger–Sterk‐based homodecoupling scheme reported herein efficiently removes unwanted proton–proton splittings from the heteronuclear multiplets, so that the desired heteronuclear couplings can be determined simply by measuring frequency differences between singlet maxima in the resulting spectra. The proposed pseudo‐1D/2D pulse sequences were tested on nucleotides, a metal complex incorporating P heterocycles, and diglycosyl (di)selenides, as well as on other carbohydrate derivatives, for the extraction of nJ(1H,31P), nJ(1H,77Se), and nJ(1H,13C) values, respectively.  相似文献   

14.
The polymers with functionalized alkoxy groups and with narrow molecular weight distribution (Mw/Mn < 1.12) are obtained from the living polymerization of 2‐alkoxy‐1‐methylenecyclopropanes using π‐allylpalladium complex, [(PhC3H4)Pd(μ‐Cl)]2, as the initiator. The polymers with oligoethylene glycol groups in the alkoxy substituent are soluble in water, and hydroboration of the C?C double bond and ensuing addition of the OH groups to C?N bond of alkyl isocyanate produce the polymers with urethane pendant groups. The reaction decreases solubility of the polymer in water significantly. Di‐ and triblock copolymers of the 2‐alkoxy‐1‐methylenecyclopropanes are prepared by consecutive addition of the two or three 2‐alkoxy‐1‐methylenecyclopropane monomers to the Pd initiator. The polymers which contain both hydrophobic butoxy or tert‐butoxy group and hydrophilic oligoethylene glycol group dissolve in water and/or organic solvents, depending on the substituents. The 1H NMR spectrum of poly( 1a ‐b‐ 1h ) (? (CH2C(?CH2)CHOBu)n? (CH2C(?CH2)CH(OCH2CH2)3OMe)m? ) in D2O solution exhibits peaks because of the butoxy and ?CH2 hydrogen in decreased intensity, indicating that the polymer forms micelle particles containing the hydrophilic segments in their external parts. Aqueous solution of the polymer with a small amount of DPH (DPH = 1,6‐diphenyl‐1,3,5‐hexatriene) shows the absorbance due to DPH at concentration of the polymer higher than 5.82 × 10?5 g mL?1. Other block copolymers such as poly( 1b ‐b‐ 1h ) and poly( 1a ‐b‐ 1g ) also form the micelles that contain DPH in their core. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 959–972, 2009  相似文献   

15.
1,1‐ADEQUATE and the related long‐range 1,n‐ and n,1‐ADEQUATE variants were developed to provide an unequivocal means of establishing 2JCH and the equivalent of nJCH correlations where n = 3,4. Whereas the 1,1‐ and 1,n‐ADEQUATE experiments have two simultaneous evolution periods that refocus the chemical shift and afford net single quantum evolution for the carbon spins, the n,1‐variant has a single evolution period that leaves the carbon spin to be observed at the double quantum frequency. The n,1‐ADEQUATE experiment begins with an HMBC‐type nJCH magnetization transfer, which leads to inherently lower sensitivity than the 1,1‐ and 1,n‐ADEQUATE experiments that begin with a 1JCH transfer. These attributes, in tandem, serve to render the n,1‐ADEQUATE experiment less generally applicable and more difficult to interpret than the 1,n‐ADEQUATE experiment, which can in principle afford the same structural information. Unsymmetrical and generalized indirect covariance processing methods can complement and enhance the structural information encoded in combinations of experiments e.g. HSQC‐1,1‐ or ?1,n‐ADEQUATE. Another benefit is that covariance processing methods offer the possibility of mathematically combining a higher sensitivity 2D NMR spectrum with for example 1,1‐ or 1,n‐ADEQUATE to improve access to the information content of lower sensitivity congeners. The covariance spectrum also provides a significant enhancement in the F1 digital resolution. The combination of HMBC and 1,1‐ADEQUATE spectra is shown here using strychnine as a model compound to derive structural information inherent to an n,1‐ADEQUATE spectrum with higher sensitivity and in a more convenient to interpret single quantum presentation. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

16.
The strategy of modifying phosphane ligands through substituent variation has been widely applied in coordination chemistry and catalysis. This contribution focuses on unsymmetric ferrocene diphosphanes with electronically distinct phosphane moieties, Ph2PfcCH2PAr2 (Ar=Ph, 1 ; 3,5-C6H3Me2, 2 ; and 3,5-C6H3(CF3)2, 3 ; fc=ferrocene-1,1′-diyl), which were synthesized and converted to the corresponding selenides ( 1Se – 3Se ) and Pd(0) complexes [Pd(L-κ2P,P′)(η2-ma)] ( 5 – 8 for L= 1 – 3 and dppf, ma=maleic anhydride). All compounds were characterized by NMR spectroscopy, ESI MS and elemental analysis, and the structures of 2 , 1Se ⋅ CHCl3, 2Se and 5 ⋅ PhMe were determined by X-ray diffraction analysis. In addition, the redox behavior of 1 – 3 and 5 – 8 was studied by cyclic voltammetry and rationalized through DFT calculations. The prepared Pd(0) complexes and their model compound [Pd(dppf-κ2P,P′)(η2-ma)] were employed in Pd-catalyzed C−H arylation of benzoxazole with chlorobenzene in n-butanol in the presence of K3PO4 as the base, and the catalytic results were compared with the collected characterization data, including the 1JPSe coupling constants determined for 1Se – 3Se , as a measure of ligand basicity.  相似文献   

17.
Pseudo‐ephedrine derived 2‐imino‐1,3‐thiazolidine 1 reacts with tris(diethylamino)phosphane by stepwise replacement of the diethylamino group to give the mono‐, bis‐ and tris(imino)phosphanes 2 , 3 and 4 , respectively, of which 4 could be isolated in pure state. The analogous reaction with diethylamino‐diphenylphosphane affords the imino‐diphenylphosphane 5 . The iminophosphanes react with sulfur or selenium to give the corresponding phosphorus(V) compounds. In contrast, the reaction of the iminophosphanes with oxygen is very slow; anhydrous trimethylamine N‐oxide reacts in the melt with the phosphanes to give the oxides 4(O) and 5(O) . The molecular structures of 4(O) (in mixture with 4 ), 4(Se) , 5(S) and 5(Se) were determined by X‐ray analysis. In all cases the ring‐sulfur and the phosphorus atoms are in cis‐positions at the C=N bonds. The analogous solution structures were determined by 1H, 13C, 15N, 31P and 77Se NMR spectroscopy. In the case of the compounds 5 , 5(O) , 5(S) and 5(Se) the isotope‐induced chemical shifts 1δ14/15N(31P) were determined, using INEPT‐HEED experiments.  相似文献   

18.
Reactions of [{M(μ‐Cl)(coe)2}2] (M = Rh, Ir; coe = cis‐cyclooctene) with the secondary phosphane tBu2PH under various molar ratios were investigated. Probably, for kinetic reasons, the reaction behavior of the rhodium species differed from that of the iridium analogue in some instances. During these studies complexes [MCl(tBu2PH)3] [M = Rh ( 1 ), Ir ( 2 )] were isolated, and solution variable‐temperature 31P{1H} NMR studies revealed that these complexes show a conformational rigidity on the NMR time scale. Spectra recorded in the temperature range from 173 to 373 K indicated in each case only one rotamer containing three chemically nonequivalent phosphanes due to the restricted rotation of these ligands about the M–P bonds and the tert‐butyl substituents around the P–C(tBu) bonds, respectively. Compound 1 showed in solution already at room temperature in several solvents a dissociation of a phosphane ligand affording the known complex [{Rh(μ‐Cl)(tBu2PH)2}2] beside the free phosphane. In contrast to these findings, the iridium analogue 2 remained completely unchanged under similar conditions and exhibited, therefore, some kinetic inertness. For a better understanding of the NMR spectroscopic investigations, the molecular structure of 1 in the solid state was confirmed by X‐ray crystallography.  相似文献   

19.
Some new N‐carbonyl, phosphoramidates with formula C6H5C(O)N(H)P(O)R2 (R = NC3H6 ( 1 ), NC6H12 ( 2 ), NHCH2CH=CH2 ( 3 ), N(C3H7)2 ( 4 )) and CCl3C(O)N(H)P(O)R′2 (R′ = NC3H6 ( 5 ), NHCH2CH=CH2 ( 6 )) were synthesized and characterized by 1H, 13C, 31P NMR and IR spectroscopy and elemental analysis. The structures were determined for compounds 1 and 2 . Compound 1 exists as two crystallographically independent molecules in crystal lattice. Both compounds 1 and 2 produced dimeric aggregates via intermolecular ‐P=O…H‐N‐ hydrogen bonds, which in compound 2 is a centrosymmetric dimer. In compounds with four‐membered ring amine groups, 3J(P,C)>2J(P,C), in agreement with our previous studies about five‐membered ring amine groups. Also, 3J(P,C) values in compounds 1 and 5 are greater than in compounds with five‐, six‐ and seven‐membered ring amine groups.  相似文献   

20.
Poly[3‐(5′‐hexylpyridine‐2′‐yl)thiophene] ( P3PT ) (Mn = 13900, H‐T content = 90%) was prepared by the regioselective Grignard metathesis reaction and the subsequent Kumada coupling polymerization. Likewise, poly(3‐hexylthiophene)‐b‐poly[3‐(5′‐hexylpyridine‐2′‐yl)thiophene] ( P3HT‐b‐P3PT ) (Mn = 17,300) was synthesized in the one‐pot and successive monomer addition protocol, in which the segment ratio was calculated to be 56 ( P3HT )/44 ( P3PT ) base on the 1H NMR spectrum. The absorption and emission spectra of homopolymer P3PT(H) , obtained by the protonation of the pyridine nitrogen, in THF/cyclohexane shifted to the longer wavelength as compared with those collected in THF, suggesting the aggregation in poor solvent. The aggregation of P3PT induced by the addition of Sc(OTf)3 could be controlled by the molar ratio of pyridine and scandium complex. The protonated block copolymer P3HT‐b‐P3PT(H) was also subjected to the aggregate formation. The absorption maximum in THF/CH3OH showed a bathochromic shift and the fluorescence emission was almost quenched. From the 1H NMR spectra and DLS measurements, P3HT‐b‐P3PT(H) forms nanometer scale aggregates particularly with the insolubility and stacking of non‐ionic P3HT in alcohol as the driving force. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 3383–3389  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号