首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Two CoII complexes, Co(phen)(HL)2 ( 1 ) and [Co2(phen)2(H2O)4L2]·H2O ( 2 ) (H2L = HOOC‐(CH2)5‐COOH), were synthesized and structurally characterized on the basis of single crystal X‐ray diffraction data. In complex 1 the Co atoms are tetrahedrally coordinated by two N atoms of one phen ligand and two O atoms of different hydrogenpimelato ligands. Through π—π stacking interactions between carboxyl group and phen ligand, the complex molecules are assembled into 1D columnar chains, which are connected by intermolecular hydrogen bonds. Complex 2 consists of the centrosymmetric dinuclear [Co2(phen)2(H2O)4L2] molecules and hydrogen bonded H2O molecules. The Co atoms are each octahedrally surrounded by two N atoms of one phen ligand and four O atoms from two bis‐monodentate pimelato ligands and two H2O molecules at the trans positions. The results about thermal analyses, which were performed in flowing N2 atmosphere, on both complexes were discussed. Crystal data: ( 1 ) C2/c (no. 15), a = 13.491(1)Å, b = 9.828(1)Å, c = 19.392(2)Å, β = 100.648(1)°, U = 2526.9(4)Å3, Z = 4; ( 2 ) P1 (no. 2), a = 11.558(1)Å, b = 11.947(3)Å, c = 15.211(1)Å, α = 86.17(1)°, β = 75.55(1)°, γ = 69.95(1)°, U = 1910.3(3)Å3, Z = 2.  相似文献   

2.
The synthesis and molecular structure of trans‐{bis[(acetato‐κO)‐(2‐(1‐aziridinyl)ethanol‐κ2N,O)]}cobalt(II) ( 4 ) and cis‐{bis[chlorido‐(2‐(1‐aziridinyl)ethanol‐κ2N,O)]}cobalt(II) ( 5 ) is reported. Both neutral chelate complexes are prepared from the corresponding CoII salt [CoX2; X = OAc ( 1 ), Cl ( 2 )] and 2‐(1‐aziridinyl)ethanol (azolH, 3 ) in dry dichloromethane. A third, ionic complex, cis‐{bis[aqua‐(2‐(1‐aziridinyl)ethanol‐κ2N,O)]}cobalt(II) diacetate ( 6 ) is formed from 4 in the presence of water and could be crystallized from aqueous dichloromethane. In all cases, 2‐(1‐aziridinyl)ethanol is coordinating as bidentate chelate ligand by the nitrogen and oxygen atom of the aziridinyl and hydroxy moiety. After purification, the compounds have been fully characterized using IR spectroscopy and FAB+‐MS. The single‐crystal X‐ray structure analysis revealed a distorted octahedral geometry for all complexes with either trans ( 4 ) or cis ( 5 , 6 ) configuration.  相似文献   

3.
A new metal‐oxo cluster supported transition metal complex, [Cu(en)2(H2O)]2[Cu(en)2]0.5[MoVI8VIV6VVO42{Cu(en)2}], has been synthesized under hydrothermal conditions. Its structure was determined by single‐crystal X‐ray diffraction. The compound crystallizes in the triclinic system, space group (No. 2), a = 12.245(5), b = 12.669(5), c = 20.949(8) Å, α = 77.120(13), β = 78.107(17), γ = 65.560(14)°, V = 2860(2) Å3, Z = 2. The metal‐oxo cluster contains a novel bicapped a‐Keggin structure unit and a [Cu(en)2]2+ unit covalently bonded to the [Mo8V7O42]7? cluster.  相似文献   

4.
A polyoxometalate‐based inorganic–organic hybrid compound [CoII(2, 2′‐bpy)2]2[Mo8O26] ( 1 ) was synthesized by hydrothermal methods and structurally characterized by IR spectrum, TG analysis and X‐ray diffraction. The compound crystallizes in the monoclinic system, space group P21/n, a = 10.0681(2), b = 16.4467(2), c = 15.7838(3) Å, β = 100.046(1)°, V = 2573.52(8) Å3, Z = 2. The structure of 1 is built up from β‐[Mo8O26]4? subunits covalently linked via [CoII(2, 2′‐bpy)2]2+ fragments into a infinite 1D {[CoII(2, 2′‐bpy)2]2[Mo8O26]} polymer.  相似文献   

5.
The heteroleptic neutral tri‐tert‐butoxysilanethiolate of cobalt(II) incorporating ammonia as additional ligand ( 1 ) has been prepared by the reaction of a cobalt(II) ammine complex with tri‐tert‐butoxysilanethiol in water. Complex 1 , dissolved in hexane, undergoes oxidation in an ammonia saturated atmosphere to the ionic cobalt(III) compound 2 . Molecular and crystal structures of 1 and 2 have been determined by single crystal X‐ray structural analysis. 1 forms a dimeric molecule [Co{μ‐SSi(OBut)3}{SSi(OBut)3}(NH3)]2 with a folded central Co2S2 ring and distorted tetrahedral ligand arrangement at both CoII atoms (CoNS3 core). The product 2 is composed of the octahedral CoIII complex cation [Co{SSi(OBut)3}2(NH3)4]+ and the tri‐tert‐butoxysilanethiolate anion. Within the crystal two pairs of ions interact by hydrogen bonds forming well separated entities. 1 and 2 are the first structurally characterized cobalt thiolates where metal is also bonded to ammonia and 2 is the first cobalt(III) silanethiolate.  相似文献   

6.
The mononuclear compounds [Cu(OAc)(bipy)2]Cl·4H2O·1/2MeOH( 1 ) and [Co(OH2)2(phen)2](OAc)2·6H2O( 2 ) were unexpectedly obtained as single crystals from mother liquors left following isolation of the expected products of the reactions, in ethanol of Cu(OAc)2, benzylic acid and 2, 2'‐bipyridine (for 1 ) and Co(OAc)2, D, L‐mandelic acid and 1, 10‐phenanthroline (for 2 ). The complexes were characterized by elemental analysis, IR and electronic spectroscopy and magnetic measurements at room temperature and their structures were determined by single‐crystal X‐ray analysis. In 1 , the pentacoordinated copper atom has a basically square pyramidal coordination polyhedron, while in 2 the cobalt atom has a distorted octahedral environment. In both cases, the complexes are linked by hydrogen bonds and aromatic‐aromatic interactions.  相似文献   

7.
Reactions of 1,10‐phenanthroline monohydrate, Na2C4H4O4 · 6 H2O and MnSO4 · H2O in CH3OH/H2O yielded a mixture of [Mn2(H2O)4(phen)2(C4H4O4)2] · 2 H2O ( 1 ) and [Mn(phen)2(H2O)2][Mn(phen)2(C4H4O4)](C4H4O4) · 7 H2O ( 2 ). The crystal structure of 1 (P1 (no. 2), a = 8.257(1) Å, b = 8.395(1) Å, c = 12.879(2) Å, α = 95.33(1)°, β = 104.56(1)°, γ = 106.76(1)°, V = 814.1(2) Å3, Z = 1) consists of the dinuclear [Mn2(H2O)4(phen)2(C4H4O4)2] molecules and hydrogen bonded H2O molecules. The centrosymmetric dinuclear molecules, in which the Mn atoms are octahedrally coordinated by two N atoms of one phen ligand and four O atoms from two H2O molecules and two bis‐monodentate succinato ligands, are assembled via π‐π stacking interactions into 2 D supramolecular layers parallel to (101) (d(Mn–O) = 2.123–2.265 Å, d(Mn–N) = 2.307 Å). The crystal structure of 2 (P1 (no. 2), a = 14.289(2) Å, b = 15.182(2) Å, c = 15.913(2) Å, α = 67.108(7)°, β = 87.27(1)°, γ = 68.216(8)°, V = 2934.2(7) Å3, Z = 2) is composed of the [Mn(phen)2(H2O)2]2+ cations, [Mn(phen)2(C4H4O4)] complex molecules, (C4H4O4)2– anions, and H2O molecules. The (C4H4O4)2– anions and H2O molecules form 3 D hydrogen bonded network and the cations and complex molecules in the tunnels along [001] and [011], respectively, are assembled via the π‐π stacking interactions into 1 D supramolecular chains. The Mn atoms are octahedrally coordinated by four N atoms of two bidentate chelating phen ligands and two water O atoms or two carboxyl O atoms (d(Mn–O) = 2.088–2.129 Å, d(Mn–N) = 2.277–2.355 Å). Interestingly, the succinato ligands in the complex molecules assume gauche conformation bidentately to chelate the Mn atoms into seven‐membered rings.  相似文献   

8.
The η2‐thio‐indium complexes [In(η2‐thio)3] (thio = S2CNC5H10, 2 ; SNC4H4, (pyridine‐2‐thionate, pyS, 3 ) and [In(η2‐pyS)22‐acac)], 4 , (acac: acetylacetonate) are prepared by reacting the tris(η2‐acac)indium complex [In(η2‐acac)3], 1 with HS2CNC5H10, pySH, and pySH with ratios of 1:3, 1:3, and 1:2 in dichloromethane at room temperature, respectively. All of these complexes are identified by spectroscopic methods and complexes 2 and 3 are determined by single‐crystal X‐ray diffraction. Crystal data for 2 : space group, C2/c with a = 13.5489(8) Å, b = 12.1821(7) Å, c = 16.0893(10) Å, β = 101.654(1)°, V = 2600.9(3) Å3, and Z = 4. The structure was refined to R = 0.033 and Rw = 0.086; Crystal data for 3 : space group, P21 with a = 8.8064 (6) Å, b = 11.7047 (8) Å, c = 9.4046 (7) Å, β = 114.78 (1)°, V = 880.13(11) Å3, and Z = 2. The structure was refined to R = 0.030 and Rw = 0.061. The geometry around the metal atom of the two complexes is a trigonal prismatic coordination. The piperidinyldithiocarbamate and pyridine‐2‐thionate ligands, respectively, coordinate to the indium metal center through the two sulfur atoms and one sulfur and one nitrogen atoms, respectively. The short C‐N bond length in the range of 1.322(4)–1.381(6) Å in 2 and C‐S bond length in the range of 1.715(2)–1.753(6) Å in 2 and 3 , respectively, indicate considerable partial double bond character.  相似文献   

9.
10.
The reaction of CuCl2 · 2 H2O, 1,10‐phenanthroline (phen), suberic acid and Na2CO3 in a CH3CN–H2O solution yielded blue needle‐like crystals of [Cu2(phen)2(C8H12O4)2] · 3 H2O. The crystal structure (monoclinic, P21/n, a = 10.756(2) Å, b = 9.790(2) Å, c = 18.593(4) Å, β = 91.15(3)°, Z = 2, R = 0.043, wR2 = 0.1238) consists of suberato‐bridged [Cu2(phen)2(C8H12O4)4/2] layers and hydrogen bonded H2O molecules. The Cu atoms are coordinated by two N atoms from one bidentate chelating phen ligand and three carboxyl O atoms from different suberato ligands to form distorted [CuN2O3] square‐pyramids with one carboxyl O atom at the apical position (d(Cu–N) = 2.017(2), 2.043(3) Å, basal d(Cu–O) = 1.936(2), 1.951(2) Å and axial d(Cu–O) = 2.389(2) Å). Two [CuN2O3] square‐pyramids are condensed via a common O–O edge to a centrosymmetric [Cu2N4O4] dimer with the Cu…Cu distance of 3.406(1) Å indicating no interaction between Cu atoms. The resultant [Cu2N4O4] dimers are interlinked by the tridentate suberato ligands to form [Cu2(phen)2(C8H12O4)4/2] layers parallel to (101). These are assembled via π‐π stacking interactions into 3D network with H2O molecules in the tunnels extending in the [010] direction.  相似文献   

11.
[Co74‐O)2(O2C–CH3)8(NCO)2(HNPEt3)4] · 2 OEt2, a Seven Nuclearity Complex with Four, Five, and Sixfold Coordinated Cobalt Atoms The title compound was prepared from cobalt(II) acetate with Me3SiNPEt3 at 180 °C and subsequent crystallization from diethylether to give blue, moisture sensitive single crystals, which were characterized by a crystal structure determination. Space group P21/n, Z = 2, lattice dimensions at –80 °C: a = 1544.0(1), b = 1522.1(2), c = 1702.0(1) pm, β = 103.911(10)°, R = 0.0490. [Co74‐O)2(O2C–CH3)8(NCO)2 · (HNPEt3)4] has a centrosymmetric cluster‐like structure in which the octahedrally coordinated central cobalt atom is connected with the remaining six cobalt atoms via two μ4‐oxygen atoms as well as via four bridging acetato groups to form a Co(Co)6 octahedral skeleton. Four of the peripheric cobalt atoms have a distorted trigonal‐bipyramidal coordination sphere, the other two cobalt atoms are tetrahedrally coordinated. The latter are connected with the nitrogen atoms of the cyanato groups.  相似文献   

12.
A new coordination complex, [Co(DAT)2(H2O)4](HTNR)2 · 2H2O [DAT = 1,5‐diaminotetrazole, HTNR = 2,4,6‐trinitroresorcinol (styphnic acid)], was obtained in high yield and characterized by elemental analysis and Fourier‐transform infrared (FT‐IR) spectroscopy. The molecular structure of [Co(DAT)2(H2O)4](HTNR)2 · 2H2O in the crystalline state is determined by X‐ray crystallography is as follows: monoclinic, C2/c, a = 19.216(3) Å, b = 5.4992(8) Å, c = 30.418(5) Å, β = 104.500(5), V = 3112.0(8) Å3, Z = 4, ρcalc. = 1.851 g · cm–3, R1 = 0.0271 and wR2 = (all data) 0.0674. The central cobalt(II) cation is coordinated by two nitrogen atoms of two DAT and four oxygen atoms of four H2O ligand molecules to form a six‐coordinate and slightly distorted octahedral structure. Extensive intermolecular hydrogen bonds link molecular units of [Co(DAT)2(H2O)4(HTNR)2 · 2H2O together to form a 3D net structure with pore canals. The thermal decomposition mechanism for the title compound was predicted based on DSC, TG‐DTG, and FT‐IR analyses and non‐kinetic parameters of the first exothermic process were estimated by applying the Kissinger, Starink, and Ozawa–Doyle methods.  相似文献   

13.
Reaction of MnSO4 · H2O, 2,2′‐bipyridine (bpy), suberic acid and Na2CO3 in CH3OH/H2O yielded a mixture of [Mn2(H2O)4(bpy)2(C8H12O4)2] · 2 H2O ( 1 ) and [Mn(H2O)2‐ (bpy)(C8H12O4)2/2] · H2O ( 2 ). In both complexes, the Mn atoms are octahedrally coordinated by two N atoms of one bpy ligand and four O atoms of two trans positioned H2O molecules and two suberato ligands (d(Mn–O) = 2.107–2.328 Å; d(Mn–N) = 2.250–2.330 Å). The bis‐monodentate suberato ligands bridge Mn atoms to form dinuclear [Mn2(H2O)4(bpy)2(C8H12O4)2] complex molecules in 1 and 1D [Mn(H2O)2(bpy)(C8H12O4)2/2] chains in 2 . Via the intermolecular hydrogen bondings and π‐π stacking interactions, the dinuclear molecules in 1 are assembled into 2D networks parallel to (100), between which the crystal H2O molecules are sandwiched. The polymeric chains in 2 are linked together by interchain hydrogen bonding and π‐π stacking interactions into 3D networks with the crystal H2O molecules located in tunnels along [010]. Crystal data for 1 : P21/c (no. 14), a = 10.092(1) Å, b = 11.916(2) Å, c = 17.296(2) Å, β = 93.41(1)° and Z = 2. Crystal data for 2 : P21/c (no. 14), a = 11.176(2) Å, b = 9.688(1) Å, c = 37.842(6) Å, β = 90.06(1)° and Z = 8.  相似文献   

14.
The title compound [Cu2(phen)2(C9H14O4)2] · 6 H2O was prepared by the reaction of CuCl2 · 2 H2O, 1,10‐phenanthroline (phen), azelaic acid and Na2CO3 in a CH3OH/H2O solution. The crystal structure (monoclinic, C2/c (no. 15), a = 22.346(3), b = 11.862(1), c = 17.989(3) Å, β = 91.71(1)°, Z = 4, R = 0.0473, wR2 = 0.1344 for 4279 observed reflections) consists of centrosymmetric dinuclear [Cu2(phen)2(C9H14O4)2] complexes and hydrogen bonded H2O molecules. The Cu atom is square‐planar coordinated by the two N atoms of the chelating phen ligand and two O atoms of different bidentate bridging azelaate groups with d(Cu–N) = 2.053, 2.122(2) Å and d(Cu–O) = 1.948(2), 2.031(2) Å. Two azelaate anions bridge two common Cu atoms via the terminal O atoms (d(C–O) = 1.29(2) Å; d(C–C) = 1.550(4)–1.583(4) Å). Phen ligands of adjacent complexes cover each other at distances of about 3.62 Å, indicating π‐π stacking interaction, by which the complexes are linked to 1 D bands.  相似文献   

15.
Bis(tetramethylammonium) dodecahydrododecaborate, [(CH3)4N]2[B12H12], and bis(tetramethylammonium) dodecahydrododecaborate acetonitrile, [(CH3)4N]2[B12H12] · CH3CN, were synthesized and characterized via Infrared, 1H and 11B NMR spectroscopy. [(CH3)4N]2[B12H12] crystallizes isopunctual to the alkali metal dodecaborates. The crystal structure of [(CH3)4N]2[B12H12] · CH3CN was determined from single crystal data and refined in the orthorhombic crystal system (Pcmn, no. 62, a = 898.68(8), b = 1312.85(9) c = 1994.5(1) pm, R(|F| , 4σ) = 5.9%, wR(F2) = 18.3%). Here, the geometry of the dodecaborate anion is that of an almost ideal icosahedron, less distorted than most other dodecaborates known. By low‐temperature Guinier‐Simon diffractometry phase transitions were detected for [(CH3)4N]2[B12H12] and [(CH3)4N]2[B12H12] · CH3CN at –70 and –15 °C, respectively.  相似文献   

16.
[Co(H2O)2Cl2(H2SeO3)2] (monoclinic, P21/c, Z = 2, a = 519.82(5), b = 1462.6(1), c = 643.09(7) pm, β = 92.51(1)°, Rall = 0.0583) was obtained from CoCl2 and H2SeO3 as purple plate–shaped single crystals. In the compound, the Co2+ ions are octahedrally coordinated by two Cl? ions, two H2O molecules, and two monodentate H2SeO3 molecules, leading to neutral complexes [Co(H2O)2Cl2(H2SeO3)2]. They are connected by hydrogen bonds involving both chlorine and oxygen atoms as acceptor atoms.  相似文献   

17.
Crystals of anionic Na[CuCl2(HOCH2C≡CCH2OH)]·2H2O π‐complex have been synthesized by interaction of 2‐butyne‐1,4‐diol with CuCl in a concentrated aqueous NaCl solution and characterized by X‐ray diffraction at 100 K. The crystals are triclinic: space group , a = 7.142(3), b = 7.703(3), c = 10.425(4) Å, α = 105.60(3), β = 99.49(3), γ = 110.43(3)°, V = 495.9(4) Å3, Z = 2, R = 0.0203 for 3496 reflections. The structure is built of discrete [CuCl2(HOCH2C≡CCH2OH)]? anionic stacks and polymeric cations among the stacks. The CuI atom adopts trigonal planar coordination of two Cl? anions and the C≡C bond of 2‐butyne‐1,4‐diol, Cu–(C≡C) distance is equal to 1.903(3) Å. Na+ cations environment is octahedral and consists of O and Cl atoms. The crystal packing is governed by strong hydrogen bonds of O–H···Cl and O–H···O types.  相似文献   

18.
The mononuclear complex, [NiCl2 (trzCH2CH2COPh)4]·6H2O (trz =1,2,4‐triazole), was synthesized and its structure was determined by single crystal X‐ray determination. It crystallizes in the monoclinic system, space group P21/c, with lattice parameters: a = 0.80391(2) nm, b = 1.08215(2) tun, c = 2.90133(2) nm, β = 94.792 (1)° and Z = 2. Each nickel atom is coordinated by four N atoms of triazole from four β‐(1,2,4‐triazole‐1‐yl)propiophenone ligands and two chloride anions in trans arrangement with octahedral coordination geometry. In addition to the coordinating nickel complex, there are six uncoordinated water molecules. The Ni‐Cl distance is 0.24865(8) nm and the Ni‐N distances are in the range of 0.2072(2) to 0.2099(2) nm, respectively. In the solid state, the title compound forms three dimensional network structure through hydrogen bonds. The intermolecular hydrogen bonds connect the [NiCl2(C2H2N3CH2CH2COPh)4] and H2O moieties. The deep green crystals were also examined by elemental analysis, FT‐IR and UV spectra, which are in agreement with the structural data.  相似文献   

19.
Iso‐type [MII(pdc)(DPphen)(H2O]·H2O compounds (M = Co or Cu, pdc = 2,6‐pyridinedicarboxylato(2‐) ligand and DPphen = 4,7‐diphenyl‐1,10‐Phenanthroline) were synthesized and studied by X‐ray diffraction, thermal and spectral methods. The N,N′‐equatorial bidentate DPphen‐copper(II) chelation imposes a mer‐N(equatorial)+O2(apical) conformation to pdc in the coordination polyhedron (type 4+1+1). In the Co(II) derivative, the coordination is of type 1+2+2+1 because of a lesser Jahn‐Teller distortion. In the crystals, π,π‐interligand interactions between phen ligands connect the complex molecules in multi‐stacked chains. Aqua···O(carboxyl) H‐bonding interactions reinforce the stacked chains and build double chains in 1D supramolecular structures parallel to the a axis. Non coordinated water connect these structures by H‐bonds.  相似文献   

20.
Two sulfato CuII complexes [Cu2(bpy)2(H2O)(OH)2(SO4)]· 4H2O ( 1 ) and [Cu(bpy)(H2O)2]SO4 ( 2 ) were synthesized and structurally characterized by single crystal X—ray diffraction. Complex 1 consists of the asymmetric dinuclear [Cu2(bpy)2(H2O)(OH)2(SO4)] complex molecules and hydrogen bonded H2O molecules. Within the dinuclear molecules, the Cu atoms are in square pyramidal geometries, where the equatorial sites are occupied by two N atoms of one bpy ligand and two O atoms of different μ2—OH groups and the apical position by one aqua ligand or one sulfato group. Through intermolecular O—H···O and C—H···O hydrogen bonds and intermolecular π—π stacking interactions, the dinuclear complex molecules are assembled into layers, between which the hydrogen bonded H2O molecules are located. The Cu atoms in 2 are octahedrally coordinated by two N atoms of one bpy ligand and four O atoms of two H2O molecules and two sulfato groups with the sulfato O atoms at the trans positions and are bridged by sulfato groups into 1[Cu(bpy)(H2O)2(SO4)2/2] chains. Through the interchain π—π stacking interactions and interchain C—H···O hydrogen bonds, the resulting chains are assembled into bi—chains, which are further interlinked into layers by O—H···O hydrogen bonds between adjacent bichains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号