首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The pentacarbonylhalogene complexes [XM(CO)5] (M = Mn, Re; X = Cl, Br) ( 1a – 2b ) react with 2,2‐dimethylaziridine by thermally induced substitution reaction to give the neutral bis‐aziridine complexes [M(X)(CO)3Az2] (Az = N(H)C2H2Me2) ( 3a – 4b ). As a result of the X‐ray structure analyses, the metal atoms are octahedrally configurated in the facial arrangement; the intact three‐membered rings coordinate through their distorted tetrahedrally configurated N atoms. All compounds 3a – 4b are stable with respect to the directed thermal alkene elimination to give the corresponding nitrene complexes (CO)4(X)M=NH; their IR, 1H and 13C{1H} NMR, and MS spectra are reported and discussed.  相似文献   

2.
3.
The reactions of M(CO)5X ( M = Mn, Re; X = Cl, Br, I) with E2(CF3)4 (E = P, As) between 50 and 90°C yield binuclear complexes of the type M2(CO)8E(CF3)2X with two different bridging ligands, the formation of which is influenced by M (Mn > Re), E (P > As) , and X(I > Br > Cl). The main by-product is the symmetrical system M2(CO)8[E(CF3)2]2, which is however not formed by the partial replacement of X by E(CF3)2 since this reaction requires temperatures above 120°C. The observed products can be explained by a three-step reaction path starting with the cleavage of E2(CF3)4 followed by the subtitution of a cis-CO group in the M(CO)5X component by M(CO)5E(CF3)2 and the ring closure.  相似文献   

4.
M(CO)5X (M = Mn, Re; X = Cl, Br, I) reacts with DAB (1,4-diazabutadiene = R1N=C(R2)C(R2)′=NR′1) to give M(CO)3X(DAB). The 1H, 13C NMR and IR spectra indicate that the facial isomer is formed exclusively. A comparison of the 13C NMR spectra of M(CO)3X(DAB) (M = Mn, Re; X = Cl, Br, I; DAB = glyoxalbis-t-butylimine, glyoxyalbisisopropylimine) and the related M(CO)4DAB complexes (M = Cr, Mo, W) with Fe(CO)3DAB complexes shows that the charge density on the ligands is comparable in both types of d6 metal complexes but is slightly different in the Fe-d8 complexes. The effect of the DAB substituents on the carbonyl stretching frequencies is in agreement with the A′(cis) > A″ (cis) > A′(trans) band ordering.Mn(CO)3Cl(t-BuNCHCHNt-Bu) reacts with AgBF4 under a CO atmosphere yielding [Mn(CO)4(t-BuNCHCHN-t-Bu)]BF4. The cationic complex is isoelectronic with M(CO)4(t-BuNCHCHNt-Bu) (M = Cr, Mo, W).  相似文献   

5.
The 13C NMR spectra of cis-M(CO)4X2 and M′(CO)5X (M = Fe, Ru, Os; M′ = Mn, Re; X = H, I) and cis·Os(CO)4Me2 are reported. Variable temperature spectra demonstrated the stereochemical nonrigidity of cis-Fe(CO)4H2 and the stereochemical rigidity of the rest. The carbonyl averaging process in cis-Fe(CO)4H2 occurs without ligand dissociation. Improved syntheses of some of these derivatives are also given.  相似文献   

6.
W(CO)5L complexes (L = R2EER′2, R2EE′R; R, R′ = CH3, CF3; E = P, As; E′ = S, Se, Te) have been prepared by reaction of W(CO)5·THF with L at room temperature or by redistribution reaction of W(CO)5E2Me4 with E2(CF3)4 or E′2Me2 as well as by cleavage of E2(CF3)4 with W(CO)5EMe2H. The new compounds were characterized by analytical and spectroscopic (IR, NMR, MS) methods; by comparison with of the data of free and coordinated ligands the effects of complexation are studied.  相似文献   

7.
Preparation of Germanium-Manganese-, Germanium-Rhenium- and Tin-Rhenium-Clusters of the Type M2(CO)8[μ-EXM(CO)5]2 (M = Mn, E = Ge, X = Br, I; M = Re, E = Ge or Sn, X = I or Cl, Br, I) The clusters Re2(CO)8[μ-SnXRe(CO)5]2 are prepared by reaction of Re2(CO)10 and SnX2 in a Schlenk-tube under release of pressure (X = Cl, Br, I) or in a sealed glass tube (X = Br, I). As central structural unit a four-membered Re2Sn2 ring has to be assumed. This unit can be opened again by reaction with CO under pressure. X2Sn[Re(CO)5]2, which is also formed during the preparation of the clusters in dependance of the CO-pressure, indicates insertion of SnX2 into the Re—Re bond to be the primary step. The corresponding clusters M2(CO)8[μ-GeXM(CO)5]2 (M = Mn, X = Br, I; M = Re, X = I) are prepared by reaction of GeI2 and M2(CO)10 or of I2Ge[Mn(CO)5]2 and Mn2(CO)10 or of Br3GeMn(CO)5 and BrMn(CO)5. Ir frequencies of the new clusters are assigned.  相似文献   

8.
Chelate Complexes of the Type M(CO)4(Me2XGeMe2CH2X′Me2) (M) = Cr, Mo, W; X, X′ = N, P, As; Me = CH3) The ligands (Me2)XGeMe2CH2X′Me2 (M) = Cr, Mo, W) react with M(CO)4norbor (norbor = Norbornadiene) (M = Cr, Mo, W) yielding the chelate complexes M(CO)4(Me)2XGeMe2CH2X′Me2). compounds of low thermal stability are formed with the ligands (Me2NGeMe2CH2X′Me2 because of the weak donor ability of the GeNMe2 group and with Me2AsGeMe2CH2NMe2 caused by strong steric ring tension. The new compounds are characterized by analytical and spectroscopic (n.m.r., i.r., m.s.) investigations.  相似文献   

9.
Mn(CO)5M′(CO)3DAB complexes (M′ = Mn, Re; DAB = R1N=C(R2)-C(R′2)=NR1) can be easily obtained from the reaction between Mn(CO)5? and M′(CO)3X(DAB) (M′ = Mn, Re; X = Cl, Br, I). The complexes are formed by a nucleophilic mechanism, while a redistribution is responsible for the formation of a small amount of Mn2(CO)10.A diastereotopic effect can be observed in the 1H and 13C NMR spectra of complexes having isopropyl groups attached to the DAB ligand skeleton. A comparison is made with mononuclear complexes of the same symmetry, and the chemical shift differences for the methyl groups strongly depend on the substituent on the central metal responsible for the asymmetry.The low temperature enhancement of the σ → σ transition localised on the metal—metal bond, which is normally observed for this type of compounds, was not observed for the Mn(CO)5M′(CO)3(DAB) complexes. The metal—metal bond can be activated by irradiating at the wave lengths associated with the CT transitions between the metal and the DAB ligand. Metal—metal bond cleavage occurs and Mn2(CO)10 is formed.  相似文献   

10.
Heteronuclear Metal Atom Clusters of the Types X4?n[SnM(CO)4P(C6H5)3]n and M2(CO)8[μ-Sn(X)M(CO)4P(C6H5)3]2 by Reaction of SnX2 with M2(CO)8[P(C6H5)3]2 (X = Halogene; M = Mn, Re; n = 2, 3) The compounds of the both types X4?n[SnM(CO)4P(C6H5)3]n (n = 3; M = Mn; X = F, Cl, Br, I. n = 2: M = Mn, Re; X = Cl, Br, I) and M2(CO)8[μ-Sn(X)M(CO)4P(C6H5)3]2 (M = Mn; X = Cl, I. M = Re; X = Cl, Br, I) are prepared by reaction of SnX2 with M2(CO)8[P(C6H5)3]2 (M = Mn, Re). Their IR frequencies are assigned. In Re2(CO)8[μ-Sn(Cl)Re(CO)4P(C6H5)3]2 the central molecule fragment contains a planar Re2Sn2 rhombus with a transannular Re? Re bond of 316.0(2) pm. Each of the SnIV atoms is connected with the terminal ligands Cl and Re(CO)4P(C6H5)3. These ligands are in transposition with respect to the Re2Sn2 ring. The mean values for the remaining bond distances (pm) are: Sn? Re = 274.0(3); Sn? Cl = 243(1), Re? C = 176(5), Re? P = 242.4(9), C? O = 123(5). The factors with an influence on the geometrical shape of such M2Sn2 rings (M = transition metal) are discussed.  相似文献   

11.
Cluster Complexes [M2Rh(μ‐PCy2)(μ‐CO)2(CO)8] with Triangular Core of RhM2 (M = Re, Mn; M2 = MnRe): Synthesis, Structure, Ring Opening Reaction, and Properties as Catalysts for Hydroformylation and Isomerisation of 1‐Hexene The salts PPh4[M2(μ‐H)(μ‐PCy2)(CO)8] and Rh(COD)[ClO4] were in equimolar amounts reacted at –40 to –15 °C in the presence of CO(g) in CH2Cl2/methanol solution under release of PPh4[ClO4] to intermediates. Such species formed in a selective reaction the unifold unsaturated 46 valence electrons title compounds [M2Rh(μ‐PCy2)(μ‐CO)2(CO)8] (M = Re 1 , Mn 2 ; M2 = MnRe 3 ) in yields of > 90%; analogeous the derivatives with the PPh2 bridge could the obtained (M = Re 4 , Mn 5 ). From these clusters the molecular structure of 2 was determined by a single crystal X‐ray analysis. The exchange of the labil CO ligand attached at the rhodium ring atom in 1 – 3 against selected tertiary and secondary phosphanes in solution gave the substitution products [M2RhL(μ‐PCy2)(μ‐CO)2(CO)7] (M = Re: L = PMe3 6 , P(n‐Bu)3 7 , P(n‐C6H4SO3Na)3 8 , HPCy2 9 , HPPh2 10 , HPMen2 11 , M2 = MnRe: L = HPCy2 12 ) nearly quantitative. Such dimanganese rhodium intermediates ligated with secondary phosphanes were converted in a subsequent reaction to the ring‐opened complexes [MnRh(μ‐PCy2)(μ‐H)(CO)5Mn(μ‐PR2)(CO)4] (M = Mn: R = Cy 13 , Ph 14 , Mn 15 ). The molecular structure of 13 , which showed in the time scale of the 31P NMR method a fluxional behaviour, was determined by X‐ray structure analysis. All products obtained were always characterized by means of υ(CO)Ir, 1H and 31P NMR measurements. From the reactants of hydroformylation process, CO(g) 1 – 2 in different solvents afforded at 20 °C under a reversible ring opening reaction the valence‐saturated complexes [MRh(μ‐PCy2)(CO)7M(CO)5] (M = Re 16 , Mn 17 ), whereas the reaction of CO(g) and the ring‐opened 13 to [MnRh(μ‐PCy2)(μ‐H)(CO)6Mn(μ‐PCy2)(CO)4] ( 18 ) was as well reversible. The molecular structures of 17 and 18 were determined by X‐ray analysis. The υ(CO)IR, 1H and 31P NMR measurements in pressure‐resistant reaction vessels at 20 °C ascertained the heterolytic splitting of hydrogen in the reaction of 1 – 2 dissolved in CDCl3 or THF‐d8 under formation of product monoanions [M2Rh(μ‐CO)(μ‐H)(μ‐PCy2)(CO)9] (M = Re, Mn), which also were formed by the reaction of NaBH4 and 1 – 2 . Finally, the substrate 1‐hexene and 1 and 3 gave under the release of the labil CO ligand an η2‐coordination pattern of hexene, which was weekened going from the Re to the Mn neighbor atoms. After the results of the catalytic experiments with 1 and 2 as catalysts, such change in the bonding property revealed an advantageous formation of hydroformylation products for the dirhenium rhodium catalyst 1 and that of isomerisation products of hexene for the dimanganese rhodium catalyst 2 . Par example, 1 generated n‐heptanal/2‐methylhexanal in TOF values of 246 [h–1] (n/iso = 3.4) and the c,t‐hexenes in that of 241 [h–1]. Opposotite to this, 2 achieved such values of 55 [h–1] (n/iso = 3.6) and 473 [h–1]. A triphenylphosphane substitution product of 1 increased the activity of the hydroformylation reaction about 20%, accompanied by an only gradually improved selectivity. The hydrogenation products like alcohols and saturated hydrocarbons known from industrial hydroformylation processes were not observed. The metals manganese and rhenium bound at the rhodium reaction center showed a cooperative effect.  相似文献   

12.
Organometallic Lewis Acids. XLII. Carbonyl- and Nitrosyl Complexes of Manganese and Rhenium of Weakly Coordinated Anions (Ph3P)2(ON)2MnX, (Ph3P)n(OC)5–nMX (M = Mn, Re; n = 1, 2; X = FBF3, OSO2CF3, OSO2F, OCORf) The complexes (Ph3P)2(ON)2MnX (X = FBF3, OSO2CF3, OSO2F, OCOCF3, OCOC3F7) and (Ph3P)n(OC)5–nMX (M = Mn, Re; n = 1, 2; X = FBF3, OSO2CF3) have been obtained by reaction of (Ph3P)2(ON)2MnH and (Ph3P)n(OC)5–nMeMe with the corresponding acids HX or from (Ph3P)n(OC)5–nReBr (n = 1, 2) with silver salts AgX, respectively. The compounds have been characterized by their IR and partially by 19F-NMR data. An efficient method for the preparation of the hydride (Ph3P)2(ON)2MnH is reported.  相似文献   

13.
Chelate complexes of the type (CO)4M iX2 (X = Me, Cl) have been prepared from Na[Mn(CO)5] and HMn (CO)5, respectively, by two-step reactions with the ligands Me2PCH2CH2SiX2R′ using alkali salt, amine or HCl elimination. (CO)4M iCl2 is also obtained by cleavage of Mn2(CO)10 with Me2PCH2CH2SiCl3. IN the case of HMn (CO)5 the intermediates (CO)4Mn (H) L [L = Me2PSiMe3, Me2PCH2CH2SiMe2 (NMe2), Me2PCH2CH2SiCl2 (NMe2] can be isolated. The new compounds were identified by analytical and spectroscopic (IR, PMR, MS) methods.  相似文献   

14.
Alternative Ligands. XXVI. M(CO)4 L-Complexes (M ? Cr, Mo, W) of the Chelating Ligands Me2ESiMe2(CH2)2E′ Me2 (Me ? CH3; E ? P, As; E′ ? N, P, As) The reaction of M(CO)4NBD (NBD = norbornadiene; M ? Cr, Mo, W) with the ligands Me2ESiMe2(CH2)2E′ Me2 yields the chelate complexes (CO)4M[Me2ESiMe2]) for E,E′ ? P, As, but not for E and /or E′ ? N. The NSi group is not suited for coordination because of strong (p-d)π-interaction. In the case of the ligands with E ? P or As and E′ ? N chelate complexes can be detected in the reaction mixture, but isolable products are complexes with two ligands coordinated via the E donor group. The new compounds are characterized by analytical and spectroscopic (IR, NMR, MS) investigations. The spectroscopic data are also used to deduce the coordinating properties of the ligands. X-ray diffraction studies of the molybdenum complexes (CO)4Mo[Me2ESiMe2(CH2)2AsMe 2] (E ? P, As) in accord with the observed coordination effects show only small differences between SiE and CE donor functions. Attempts to use the ligands Me2ESiMe2(CH2)2AsMe2 (E ? P, As) for the preparation of Fe(CO)3L complexes result in the fission of the SiE bonds and the formation of the binuclear systems Fe2(CO)6(EMe2)2 (E ? P, As) together with the disilane derivative [Me2Si(CH2)2AsMe2]2.  相似文献   

15.
Preparation and Properties of (CF3)2EMn(CO)5 (E ? P, As) The complexes (CF3)2EMn(CO)5 (E ? P, As) are formed by the reaction of E2(CF3)4 with HMn(CO)5. They can be converted quantitatively to the binuclear compounds [Mn(CO)4E(CF3)2]2 in a thermal (E ? P) or photochemical (E ? P, As) process. u. v. irradiation of a 1:1 mixture gives the mixed derivative Mn2(CO)8As(CF3)2P(CF3)2 together with the symmetrical systems. The Mn? E bond is less reactive with HBr and Me3SnBr than the M? E bond in derivatives of the type Me3ME(CF3)2 (M ? Si, Ge, Sn; Me ? CH3). The terminal (CF3)2E groups are found to be strong π-acceptor ligands.  相似文献   

16.
17.
Reactive E=C(p‐p)π‐Systems. 54 [1] Reactions of perfluoro‐2‐arsapropene, F3CAs=CF2 (1), with H‐acidic compounds Me2EH (E = N, P, As) and MeE′H (E′ = O, S, Se) The reactions of the perfluoro‐2‐arsapropene ( 1 ) with H‐acidic compounds Me2EH (E = N, P, As) and MeE′H (E′ = O, S, Se), respectively, proceed via addition to the As=C double bond yielding either secondary arsanes F3C(H)AsCF2X (X = NMe2, PMe2, OMe, SMe) or AsX derivatives (X = AsMe2, SeMe). Me2‐AsH is obviously a border case nucleophile because, besides the AsX derivative as main product, small amounts of the arsane are formed indicative for the reverse addition pathway. With the strong base Me2NH, the addition is followed immediately by HF elimination producing the fairly stable arsaalkene F3CAs=C(F)NMe2 ( 4 ) which had already been obtained by reaction of HAs(CF3)2 with three equivalents of Me2NH. The novel rather labile compounds were identified by spectroscopic (NMR, GC/MS) investigations. – Quantum chemical DFT calculations [B3LYP/6‐311+G(d,p)] were carried out to determine the relative energy of the isomeric products and the thermodynamics of the addition reactions.  相似文献   

18.
Tetranuclear Cluster Complexes of the Type [MM′(AuR3)2(μ‐H)(μ‐PCy2)(μ4‐PCy)(CO)6] (M,M′ = Mn, Re; R = Ph, Cy, Et): Synthesis, Structure, and Topomerisation The dirhenium complex [Re2(μ‐H)(μ‐PCy2)(CO)7(ax‐H2PCy)] ( 1 ) reacts at room temperature in thf solution with each two equivalents of the base DBU and of ClAuPR3 (R = Ph, Cy, Et) in a photochemical reaction process to afford the tetranuclear clusters [Re2(AuPR3)2(μ‐H)(μ‐PCy2)(μ4‐PCy)(CO)6] (R = Ph ( 2 ), Cy ( 3 ), Et ( 4 )) in yields of 35–48%. The homologue [Mn2(μ‐H)(μ‐PCy2)(CO)7(ax‐H2PCy)] ( 5 ) leads under the same reaction conditions to the corresponding products [Mn2(AuPR3)2(μ‐H)(μ‐PCy2)(μ4‐PCy)(CO)6] (R = Ph ( 6 ), Et ( 8 )). Also [MnRe(μ‐H)(μ‐PCy2)(CO)7(ax/eq‐H2PCy)] ( 9 ) reacts under formation of [MnRe(AuPR3)2(μ‐H)(μ‐PCy2)(μ4‐PCy)(CO)6] (R = Ph ( 10 ), Et ( 11 )). All new cluster complexes were identified by means of 1H‐NMR, 31P‐NMR and ν(CO)‐IR spectroscopic measurements. 2 , 4 and 10 have also been characterized by single crystal X‐ray structure analyses with crystal parameters: 2 triclinic, space group P 1, a = 12.256(4) Å, b = 12.326(4) Å, c = 24.200(6) Å, α = 83.77(2)°, β = 78.43(2)°, γ = 68.76(2)°, Z = 2; 4 monoclinic, space group C2/c, a = 12.851(3) Å, b = 18.369(3) Å, c = 40.966(8) Å, β = 94.22(1)°, Z = 8; 10 triclinic, space group P 1, a = 12.083(1) Å, b = 12.185(2) Å, c = 24.017(6) Å, α = 83.49(29)°, β = 78.54(2)°, γ = 69.15(2)°, Z = 2. The trapezoid arrangement of the metal atoms in 2 and 4 show in the solid structure trans‐positioned an open and a closed Re…Au edge. In solution these edges are equivalent and, on the 31P NMR time scale, represent two fluxional Re–Au bonds in the course of a topomerization process. Corresponding dynamic properties were observed for the dimanganese compounds 6 and 8 but not for the related MnRe clusters 10 and 11 . 2 and 4 are the first examples of cluster compounds with a permanent Re–Au bond valence isomerization.  相似文献   

19.
Reactions of a Dibismuthane and of Cyclobismuthanes with Metal Carbonyls ‐ Syntheses of Complexes with R2Bi‐, RBi‐, Bi2‐ and Bin‐ligands (R = Me3CCH2, Me3SiCH2) Reactions of [Fe2(CO)9] with [(Me3CCH2)4Bi]2 or cyclo‐(Me3SiCH2Bi)n (n = 3 ‐ 5) lead to the complexes [(R2Bi)2Fe(CO)4], [RBiFe(CO)4]2[R = Me3CCH2, Me3SiCH2] and [Bi2Fe3(CO)9]. [Bi2{Mn(CO)2C5H4CH3}3] forms in a photochemical reaction of [Mn(CO)3C5H4CH3] with cyclo‐(Me3SiCH2Bi)n.  相似文献   

20.
Perfluoromethyl-Element-Ligands. XVIII. Preparation and Spectroscopic Investigation of M(CO)5L and M(CO)4L2 Complexes [L = MenP(CF3)3?n; n = 0–3; M = Cr, Mo, W] M(CO)5L and cis-M(CO)4L2 complexes, respectively [M = Cr, Mo, W; L = MenP(CF3)3?n; n = 0–3] are prepared reacting M(CO)5 · THF or M(CO)4norbor with L at room temperature. The cis-compounds isomerize above 50°C yielding the trans-complexes; the rate of isomerization increases with increasing number of CF3 groups. Thermal reaction of M(CO)6 (M = Cr, Mo, W) with P(CF3)3 yields M(CO)5P(CF3)3 and trans-M(CO)4[P(CF3)3]2. Introduction of three P(CF3)3 ligands by reaction with M(CO)3(cycloheptatriene) (M = Cr, Mo) proves unsuccessful; besides little M(CO)5P(CF3)3 trans-M(CO)4[P(CF3)3]2 is formed. The new compounds are characterized by analytical and spectroscopic (n.m.r., i.r., MS) methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号