首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
A convenient method involving 32P-labeling of an RNA substrate at the cleavage site and subsequent enzymatic digestion of cleavage products via phosphatases reveals that pH4DZ1--an RNA-cleaving deoxyribozyme with optimal activity at pH 4--forms a 5'-cleavage fragment with 2',3'-cyclic phosphate group and a 3'-cleavage fragment with 5'-OH group.  相似文献   

3.
Detection for deoxyribozyme(DNAzyme) cleavage usually needs complex and time-consuming radial labeling,gel electrophoresis and autoradiography.A new approach was reported for detection DNAzyme cleavage product based on molecular beacon (MB).Part of the loop of MB was designed to complementary to DNAzyme cleavage product.MB was employed to monitor ligation process of RNA/DNA complex and to convert directly cleavage product information into fluorescence signal.Detection limit of the assay is 0.02 nmol/L.The cleavage product of 8 -17 DNAzyme against HCV-RNA was detected perfectly based on this assay.The method is fast,simple and ultrasensitive,which might hold great promise in DNAzyme reaction and DNAzyme gene therapy.  相似文献   

4.
Deoxyribozymes that ligate RNA expand the scope of nucleic acid catalysis and allow preparation of site-specifically modified RNAs. Previously, deoxyribozymes that join a 5'-hydroxyl and a 2',3'-cyclic phosphate were identified by in vitro selection from random DNA pools. Here, the alternative strategy of in vitro evolution was used to transform the 8-17 deoxyribozyme that cleaves RNA into a family of DNA enzymes that ligate RNA. The parent 8-17 DNA enzyme cleaves native 3'-5' phosphodiester linkages but not 2'-5' bonds. Surprisingly, the new deoxyribozymes evolved from 8-17 create only 2'-5' linkages. Thus, reversing the direction of the DNA-mediated process from ligation to cleavage also switches the selectivity in forming the new phosphodiester bond. The same change in selectivity was observed upon evolution of the 10-23 RNA-cleaving deoxyribozyme into an RNA ligase. The DNA enzymes previously isolated from random pools also create 2'-5' linkages. Therefore, deoxyribozyme-mediated formation of a non-native 2'-5' phosphodiester linkage from a 5'-hydroxyl and a 2',3'-cyclic phosphate is strongly favored in many different contexts.  相似文献   

5.
Single-cell epigenetics is envisioned to decipher manifold epigenetic phenomena and to contribute to our accurate knowledge about basic epigenetic mechanisms. Engineered nanopipette technology has gained momentum in single-cell studies; however, solutions to epigenetic questions remain unachieved. This study addresses the challenge by exploring N6-methyladenine (m6A)-bearing deoxyribozyme (DNAzyme) confined within a nanopipette for profiling a representative m6A-modifying enzyme, fat mass and obesity-associated protein (FTO). Electroosmotic intracellular extraction of FTO could remove the m6A and cause DNAzyme cleavage, leading to the altered ionic current signal. Because the cleavage can release a DNA sequence, we simultaneously program it as an antisense strand against FTO-mRNA, intracellular injection of which has been shown to induce early stage apoptosis. This nanotool thus features the dual functions of studying single-cell epigenetics and programmable gene regulation.  相似文献   

6.
Detection of deoxyribozyme(DNAzyme) cleavage process usually needs complex and time-consuming radial labeling,gel electrophoresis and autoradiography.This paper reported an approach to detect DNAzyme cleavage process in real time using a fluorescence probe.The probe was employed as DNAzyme substrate to convert directly the cleavage information into fluorescence signal in real time.Compared with traditional approach,this non-isotope method not only brought a convenient means to monitor the DNAzyme cleavag...  相似文献   

7.
《Chemistry & biology》1997,4(5):357-366
Background: The peptide antibiotic viomycin inhibits ribosomal protein synthesis, group I intron self-splicing and self-cleavage of the human hepatitis delta virus ribozyme. To understand the molecular basis of RNA binding and recognition by viomycin, we isolated a variety of novel viomycin-binding RNA molecules using in vitro selection.Results: More than 90% of the selected RNA molecules shared one continuous highly conserved region of 14 nucleotides. Mutational analyses, structural probing, together with footprinting experiments by chemical modification, and Pb2+-induced cleavage showed that this conserved sequence harbours the antibiotic-binding site and forms a stem-loop structure. Moreover, the loop is engaged in a long-range interaction forming a pseudoknot.Conclusions: A comparison between the novel viomycin-binding motif and the natural RNA target sites for viomycin showed that all these segments form a pseudoknot at the antibiotic-binding site. We therefore conclude that this peptide antibiotic has a strong selectivity for particular RNA pseudoknots.  相似文献   

8.
An RNA ligase ribozyme was converted to a corresponding deoxyribozyme through in vitro evolution. The ribozyme was prepared as a DNA molecule of the same sequence, and had no detectable activity. A population of randomized variants of this DNA was constructed and evolved to perform RNA ligation at a rate similar to that of the starting ribozyme. When the deoxyribozyme was prepared as an RNA molecule of the same sequence, it had no detectable activity. Thus, the evolutionary transition from an RNA to a DNA enzyme represents a switch, rather than a broadening, of the chemical basis for catalytic function. This transfer of both information and function is relevant to the transition between two different genetic systems based on nucleic acid-like molecules, as postulated to have occurred during the early history of life on Earth.  相似文献   

9.
For many decades it was thought that information storage and information transfer were the main functions of nucleic acids. However, artificial evolution experiments have shown that the functional potential of DNA and RNA is much greater. Here I provide an overview of this technique and highlight recent advances which have increased its potency. I also describe how artificial evolution has been used to identify nucleic acids with extreme functions. These include deoxyribozymes that generate unusual products such as light, tiny motifs made up of fewer than ten nucleotides, ribozymes that catalyze complex reactions such as RNA polymerization, information-rich sequences that encode overlapping ribozymes, motifs that catalyze reactions at rates too fast to be followed by manual pipetting, and functional nucleic acids which are active in extreme conditions. Such motifs highlight the limits of our knowledge and provide clues about as of yet undiscovered functions of DNA and RNA.  相似文献   

10.
DNA enzymes are single-stranded DNA molecules with catalytic capabilities that are isolated from random-sequence DNA libraries by "in vitro selection". This new class of catalytic biomolecules has the potential of being used as unique molecular tools in a variety of innovative applications. Here we describe the creation and characterization of an RNA-cleaving autocatalytic DNA, DEC22-18, that uniquely links chemical catalysis with real-time fluorescence signaling capability in the same molecule. A trans-acting DNA molecule, DET22-18, was also developed from DEC22-18 that behaves as a true enzyme with a k(cat) of approximately 7 min(-1)-a rate constant that is the second largest ever reported for a DNA enzyme. It cleaves a chimeric RNA/DNA substrate at the lone RNA linkage surrounded by a closely spaced fluorophore-quencher pair-a unique structure that permits the synchronization of the chemical cleavage with fluorescence signaling. DET22-18 has a stem-loop structure and can be conjugated with DNA aptamers to form allosteric deoxyribozyme biosensors.  相似文献   

11.
Breaking up is easy to do (if you're a DNA enzyme that cleaves RNA)   总被引:1,自引:0,他引:1  
In this issue of Chemistry & Biology, Cruz et al. use in vitro selection to select deoxyribozymes that collectively cleave almost any RNA dinucleotide junction. More remarkable is the finding that the new enzymes are related to the 8-17 deoxyribozyme that cleaves AG dinucleotide junctions.  相似文献   

12.
Methods of artificial evolution such as SELEX and in vitro selection have made it possible to isolate RNA and DNA motifs with a wide range of functions from large random sequence libraries. Once the primary sequence of a functional motif is known, the sequence space around it can be comprehensively explored using a combination of random mutagenesis and selection. However, methods to explore the sequence space of a secondary structure are not as well characterized. Here we address this question by describing a method to construct libraries in a single synthesis which are enriched for sequences with the potential to form a specific secondary structure, such as that of an aptamer, ribozyme, or deoxyribozyme. Although interactions such as base pairs cannot be encoded in a library using conventional DNA synthesizers, it is possible to modulate the probability that two positions will have the potential to pair by biasing the nucleotide composition at these positions. Here we show how to maximize this probability for each of the possible ways to encode a pair (in this study defined as A-U or U-A or C-G or G-C or G.U or U.G). We then use these optimized coding schemes to calculate the number of different variants of model stems and secondary structures expected to occur in a library for a series of structures in which the number of pairs and the extent of conservation of unpaired positions is systematically varied. Our calculations reveal a tradeoff between maximizing the probability of forming a pair and maximizing the number of possible variants of a desired secondary structure that can occur in the library. They also indicate that the optimal coding strategy for a library depends on the complexity of the motif being characterized. Because this approach provides a simple way to generate libraries enriched for sequences with the potential to form a specific secondary structure, we anticipate that it should be useful for the optimization and structural characterization of functional nucleic acid motifs.  相似文献   

13.
Sensitivity of phosphodiester bonds in RNA bulge loops to cleavage by short cationic peptides and compounds based on 1,4-diazabicyclo[2.2.2]octane and its conjugates with imidazole was studied. Bulge loops containing from one to seven nucleotides were formed in RNA upon its hybridization with partially complementary oligodeoxyribonucleotides. The efficiency of RNA cleavage depends on the length of a bulge loop, the position of the cleaved phosphodiester bond in the loop, and the nature of the RNA-binding fragment of chemical ribonuclease (1,4-diazabicyclo[2.2.2]octane or a cationic peptide). In the absence of Mg2+ ions, the phosphodiester bond in the CA motif located in the apical position in 4-, 6-, or 7-membered loops is cleaved with the highest efficiency. In the presence of magnesium ions, the selectivity of RNA cleavage within bulge loops is substantially enhanced. In the case of 1,4-diazabicyclo[2.2.2]octane-based compounds, RNA is subjected to cleavage predominantly at the bonds in 4-, 6-, and 7-membered loops, whereas cleavage of other bonds is greatly suppressed. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 7, pp. 1236–1246, July, 2006.  相似文献   

14.
Enantioselectivity in RNA cleavage by a synthetic metalloenzyme has been demonstrated for the first time. Thiols containing chiral ZnII‐binding head groups have been self‐assembled on the surface of gold nanoparticles. This results in the spontaneous formation of chiral bimetallic catalytic sites that display different activities (kcat) towards the enantiomers of an RNA model substrate. Substrate selectivity is observed when the nanozyme is applied to the cleavage of the dinucleotides UpU, GpG, ApA, and CpC, and remarkable differences in reactivity are observed for the cleavage of the enantiomerically pure dinucleotide UpU.  相似文献   

15.
DNAzymes are in vitro selected DNA oligonucleotides with catalytic activities. RNA cleavage is one of the most extensively studied DNAzyme reactions. To expand the chemical functionality of DNA, various chemical modifications have been made during and after selection. In this review, we summarize examples of RNA-cleaving DNAzymes and focus on those modifications introduced during in vitro selection. By incorporating various modified nucleotides via polymerase chain reaction (PCR) or primer extension, a few DNAzymes were obtained that can be specifically activated by metal ions such as Zn2+ and Hg2+. In addition, some modifications were introduced to mimic RNase A that can cleave RNA substrates in the absence of divalent metal ions. In addition, single modifications at the fixed regions of DNA libraries, especially at the cleavage junctions, have been tested, and examples of DNAzymes with phosphorothioate and histidine-glycine modified tertiary amine were successfully obtained specific for Cu2+, Cd2+, Zn2+, and Ni2+. Labeling fluorophore/quencher pair right next to the cleavage junction was also used to obtain signaling DNAzymes for detecting various metal ions and cells. Furthermore, we reviewed work on the cleavage of 2′-5′ linked RNA and L-RNA substrates. Finally, applications of these modified DNAzymes as biosensors, RNases, and biochemical probes are briefly described with a few future research opportunities outlined at the end.  相似文献   

16.
Incorporation of two alpha-L-LNA/LNA nucleotides into each of the two binding arms of a "10-23" DNAzyme has been accomplished and the RNA cleavage with these novel LNAzymes studied. In comparison with the unmodified DNAzyme, the LNAzymes show significantly improved cleavage of the phosphodiester backbone at the target nucleotide in a small RNA substrate (58n RNA) under single-turnover conditions. The LNAzymes show efficient multiple turnover. With the LNAzymes, efficient cleavage was accomplished also of a naturally occurring ribosomal RNA at a target site within a highly structured region. The reference DNAzyme was ineffective at cleaving the ribosomal RNA target.  相似文献   

17.
Effector-activated ribozymes that respond to small organic molecules have previously been generated by appending binding species (aptamers) to ribozymes. In order to determine if deoxyribozymes can similarly be activated by effector molecules, we have appended an anti-adenosine aptamer to a selected deoxyribozyme ligase. The resultant constructs are specifically activated by ATP. Optimization of the joining region resulted in ligases that are activated up to 460-fold by ATP. The selected deoxyribozyme catalyzes ligation largely via a templating mechanism. Effector activation is surprisingly achieved by suppression of the rate of the background, templated ligation reaction in the absence of the effector molecule, probably by misalignment of the oligonucleotide substrates. This novel allosteric mechanism has not previously been observed for nucleic-acid catalysts and is rare even in protein catalysts.  相似文献   

18.
19.
Background: Ribozymes catalyze an important set of chemical transformations in metabolism, and ‘engineered’ ribozymes have been made that catalyze a variety of additional reactions. The possibility that catalytic DNAs or ‘deoxyribozymes’ can be made has only recently been addressed. Specifically, it is unclear whether the absence of the 2′ hydroxyl renders DNA incapable of exhibiting efficient enzyme-like activity, making it impossible to discover natural or create artificial DNA biocatalysts.Results: We report the isolation by in vitro selection of two distinct classes of self-cleaving DNAs from a pool of random-sequence oligonucleotides. Individual catalysts from ‘class I’ require both Cu2+ and ascorbate to mediate oxidative self-cleavage. Individual catalysts from class II use Cu2+ as the sole cofactor. Further optimization of a class II individual by in vitro selection yielded new catalytic DNAs that facilitate Cu2+-dependent self-cleavage with rate enhancements exceeding 1000 000-fold relative to the uncatalyzed rate of DNA cleavage.Conclusions: Despite the absence of 2′ hydroxyls, single-stranded DNA can adopt structures that promote divalent-metal-dependent self-cleavage via an oxidative mechanism. These results suggest that an efficient DNA enzyme might be made to cleave DNA in a biological context.  相似文献   

20.
Abstract

Ribozymes that distinguish a single base change in RNA were synthesized and used to specifically cleave c-Ha-ras messenger RNA. Using phosphorothioate containing oligonucleotide substrates, we have shown that Mg2+ binds to the pro-R oxygen of the phosphate and that the RNA cleavage reaction occurs via an in-line mechanism. Oligoribonucleotides containing a modified nucleoside are described.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号