首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The compounds [Ln(NC12H8)2], Ln = Eu and Yb, were obtained in solvent free reactions of the rare earth elements europium and ytterbium with the amine carbazole. Single crystals of both compounds were grown from the melt syntheses, no recrystallization from solvents was necessary. The new compounds are the first examples of homoleptic carbazolates of the rare earth elements furthermore exhibiting divalent lanthanides. In absence of any solvent, carbazole as the sole coordination partner shows η6‐π‐coordination in addition to the μ1‐ and μ2‐coordination of the nitrogen atoms. This results in a one‐dimensional chain structure of dimers with a formal C.N. of 6 for the rare earth elements and thus being low for divalent lanthanides. The products were investigated by X‐ray single crystal and powder diffraction, Mid IR, Far IR and Raman spectroscopy, and with DTA/TG regarding their thermal behaviour. Both compounds [Ln(NC12H8)2], Ln = Eu (1) and Yb (2) , crystallize isotypic in the triclinic space group P1.  相似文献   

2.
Bipyrimidines have been chosen as (N∧N)(N∧N) bridging ligands for connecting metal centers. IrIII-LnIII (Ln = Nd, Yb, Er) bimetallic complexes [Ir(dfppy)2(μ-bpm)Ln(TTA)3]Cl were synthesized by using Ir(dfppy)2(bpm)Cl as the ligand coordinating to lanthanide complexes Ln(TTA)3·2H2O. The stability constants between Ir(dfppy)2(bpm)Cl and lanthanide ions were measured by fluorescence titration. The obvious quenching of visible emission from IrIII complex in the IrIII-LnIII (Ln = Nd, Yb, Er) bimetallic complexes indicates that energy transfer occurred from IrIII center to lanthanides. NIR emissions from NdIII, YbIII, and ErIII were obtained under the excitation of visible light by selective excitation of the IrIII-based chromophore. It was proven that Ir(dfppy)2(bpm)Cl as the ligand could effectively sensitize NIR emission from NdIII, YbIII, and ErIII.  相似文献   

3.
《Polyhedron》1988,7(1):79-81
The air and moisture stable complexes [Ln{HB(C3N2H3)3}2{MeC(O)CHC(O)Me}] (Ln = La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Yb, Lu, Y), have been prepared and characterized. The molecular structures of the compounds with Ln = Ce and Yb reveal that a substantial distortion of the coordination geometry found for Ce3+ is necessary to allow the ligand set to accommodate the smaller Yb3+ ion.  相似文献   

4.
Degradation of Coordination Polymers to the Monomer and Competition of Polymerization and Chemical Scissors on Carbazolates of Yb and Eu with N‐Phenylpiperazine The coordination polymers , Ln = Yb, Eu, Cbz = carbazolate anion, C12H8N, can be degraded by the use of strong N‐donor ligands like N‐phenylpiperazine (Phpip = (C6H5)C4H8NNH) as chemical scissors. The degradation process for the ytterbium containing polymer ends in the monomeric compound [Yb(Cbz)3(Phpip)2]·1/2Phpip and includes an oxidation step YbII → YbIII. Thus the circle of reactions of Yb metal with carbazole (CbzH) starting in liquid NH3 to the coordination polymer and ending with its degradation by the use of chemical scissors is resolved. Transformation on europium has been started on the base of both metals leading to coordination polymers of the same chemical formula. However already the prelude of reactions differs for Eu as the electride induced reaction of Eu metal with CbzH in liquid ammonia followed by Phpip treatment gives single crystalline [Eu2(Cbz)4(NH3)2(Phpip)4]·2Phpip. This dimeric molecule contains EuII and ligands of all reaction steps, NH3, Cbz, Phpip, and is thereby an interesting starting point for the resolution of polymer formation and degradation as well as a competition of these counter reactions.  相似文献   

5.
Trends in lanthanide(III) (LnIII) coordination were investigated within nanoconfined solvation environments. LnIII ions were incorporated into the cores of reverse micelles (RMs) formed with malonamide amphiphiles in n‐heptane by contact with aqueous phases containing nitrate and LnIII; both insert into pre‐organized RM units built up of DMDOHEMA (N,N′‐dimethyl‐N,N′‐dioctylhexylethoxymalonamide) that are either relatively large and hydrated or small and dry, depending on whether the organic phase is acidic or neutral, respectively. Structural aspects of the LnIII complex formation and the RM morphology were obtained by use of XAS (X‐ray absorption spectroscopy) and SAXS (small‐angle X‐ray scattering). The LnIII coordination environments were determined through use of L3‐edge XANES (X‐ray absorption near edge structure) and EXAFS (extended X‐ray absorption fine structure), which provide metrical insights into the chemistry across the period. Hydration numbers for the Eu species were measured using TRLIFS (time‐resolved laser‐induced fluorescence spectroscopy). The picture that emerges from a system‐wide perspective of the Ln? O interatomic distances and number of coordinating oxygen atoms for the extracted complexes of LnIII in the first half of the series (i.e., Nd, Eu) is that they are different from those in the second half of the series (i.e., Tb, Yb): the number of coordinating oxygen atoms decrease from 9 O for early lanthanides to 8 O for the late ones—a trend that is consistent with the effect of the lanthanide contraction. The environment within the RM, altered by either the presence or absence of acid, also had a pronounced influence on the nitrate coordination mode; for example, the larger, more hydrated, acidic RM core favors monodentate coordination, whereas the small, dry, neutral core favors bidentate coordination to LnIII. These findings show that the coordination chemistry of lanthanides within nanoconfined environments is neither equivalent to the solid nor bulk solution behaviors. Herein we address atomic‐ and mesoscale phenomena in the under‐explored field of lanthanide coordination and periodic behavior within RMs, providing a consilience of fundamental insights into the chemistry of growing importance in technologies as diverse as nanosynthesis and separations science.  相似文献   

6.
In an assisted self-assembly approach starting from the [Mn6O2(piv)10(4-Me-py)2(pivH)2] cluster a family of Mn−Ln compounds (Ln=Pr−Yb) was synthesised. The reaction of [Mn6O2(piv)10(4-Me-py)2(pivH)2] ( 1 ) with N-methyldiethanolamine (mdeaH2) and Ln(NO3)3 ⋅ 6H2O in MeCN generally yields two main structure types: for Ln=Tb−Yb a previously reported Mn5Ln4 motif is obtained, whereas for Ln=Pr−Eu a series of Mn7Ln3 clusters is obtained. Within this series the GdIII analogue represents a special case because it shows both structural types as well as a third Mn2Ln2 inverse butterfly motif. Variation in reaction conditions allows access to different structure types across the whole series. This prompts further studies into the reaction mechanism of this cluster assisted self-assembly approach. For the Mn7Ln3 analogues reported here variable-temperature magnetic susceptibility measurements suggest that antiferromagnetic interactions between the spin carriers are dominant. Compounds incorporating Ln=NdIII( 2 ), SmIII( 3 ) and GdIII ( 5 ) display SMM behaviour. The slow relaxation of the magnetisation for these compounds was confirmed by ac measurements above 1.8 K.  相似文献   

7.
Saccharinate complexes of the fourteen trivalent lanthanide cations and YIII were prepared by reaction between the respective lanthanide carbonates and saccharin in aqueous solution. Their crystal structures were determined by single crystal X‐ray diffractometry. They represent three different structural types. The first family, of composition [Ln(sac)(H2O)8](sac)2�H2O (sac = anion of saccharin; Ln = La, Ce, Pr, Nd.Sm, Eu), belongs to the monoclinic space group P21/c with Z = 4 and the LnIII cation is in a tricapped trigonal prismatic environment with nine‐fold oxygen coordination. The second group of composition [Ln(sac)2(H2O)6]‐(sac)(Hsac)�4H2O with Ln = Gd, Dy, Ho, Er, Yb, Lu, and Y, pertains to the triclinic P1¯‐ space group, with Z = 2 and constitutes a new example of complexes containing simultaneously saccharin and its anion in the lattice. The TmIII and TbIII compounds, which are also triclinic (space group P1¯‐ and Z = 2) present two closely related structures conformed by three and two [Ln(sac)(H2O)7]2+ crystallographically independent complexes, respectively, with the [Tm(sac)(H2O)7]3(sac)6�9H2O and [Tb(sac)(H2O)7]2(sac)4�6H2O composition. For all the heavier lanthanides (Gd‐Lu) and yttrium the cation presents eight‐fold oxygen coordination, with the ligands at the corners of a slightly distorted square Archimedean antiprism.  相似文献   

8.
Thiophosphinate Complexes of Lanthanides. II. Molecular Structures of [Nd((cyclo-C6H11)2POS)3(H2O)]2 and NH4[Er((cyclo-C6H11)2POS)4(H2O)2] The title compounds are formed by the reaction of NH4((C6H11)2POS) and Ln(ClO4)3 (Ln ? Nd3+, Er3+). Their structures have been determined by single crystal X-ray diffraction. In the dimeric compound, the (C6H11)2POS? ions act partly as bidentate chelates and partly as monodentate O-donors. The dimers are formed by doubly coordinating oxygen atoms of two ligands. In the ionic compound, Er is only sixfold (octahedrally) coordinated by the oxygen atoms of 4 ligands and two water molecules. The structures of so far known thiophosphinate complexes of lanthanides are discussed with respect to stereochemistry and ligand bonding.  相似文献   

9.
A family of 3d–4f aggregates have been reported through guiding the dual coordination modes of ligand anion (HL?) and in situ generated ancillary bridge driven self‐assembly coordination responses toward two different types of metal ions. Reactions of lanthanide(III) nitrate (Ln=Gd, Tb, Dy, Ho and Yb), nickel(II) acetate and phenol‐based ditopic ligand anion of 2‐[{(2‐hydroxypropyl)imino}methyl]‐6‐methoxyphenol (H2L) in MeCN‐MeOH (3 : 1) mixture and LiOH provided five new octanuclear Ni‐4f coordination aggregates from two Ni2Ln2 cubanes. Single‐crystal X‐ray diffraction analysis reveals that all the members of the family are isostructural, with the central core formed from the coupling of two distorted [Ni2Ln2O4] heterometallic cubanes [Ni2Ln2(HL)2(μ3‐OH)2(OH)(OAc)4]+ (Ln=Gd ( 1 ), Tb ( 2 ), Dy ( 3 ), Ho ( 4 ) and Yb ( 5 )). Higher coordination demand of 4f ions induced the coupling of the two cubes by (OH)(OAc)2 bridges. Variable temperature magnetic study reveals weak coupling between the Ni2+ and Ln3+ ions. For the Tb ( 2 ) and Dy ( 3 ) analogs, the compounds are SMMs without an applied dc field, whereas the Gd ( 1 ) analogue is not an SMM. The observation revealed thus that the anisotropy of the Ln3+ ions is central to display the SMM behavior within this structurally intriguing family of compounds.  相似文献   

10.
The reaction of the donor‐functionalised N,N‐bis(2‐{pyrid‐2‐yl}ethyl)hydroxylamine and [LnCp3] (Cp=cyclopentadiene) resulted in the formation of bis(cyclopentadienyl) hydroxylaminato rare‐earth metal complexes of the general constitution [Ln(C5H5)2{ON(C2H4o‐Py)2}] (Py= pyridyl) with Ln=Lu ( 1 ), Y ( 2 ), Ho ( 3 ), Sm ( 4 ), Nd ( 5 ), Pr ( 6 ), La ( 7 ). These compounds were characterised by elemental analysis, mass spectrometry, NMR spectroscopy (for compounds 1 , 2 , 4 and 7 ) and single‐crystal X‐ray diffraction experiments. The complexes exhibit three different aggregation modes and binding motifs in the solid state. The late rare‐earth metal atoms (Lu, Y, Ho and Sm) form monomeric complexes of the formula [Ln(C5H5)22‐ON(C2H4‐η1o‐Py)(C2H4o‐Py)}] ( 1 – 4 , respectively), in which one of the pyridyl nitrogen donor atoms is bonded to the metal atom in addition to the side‐on coordinating hydroxylaminato unit. The larger Nd3+ and Pr3+ ions in 5 and 6 make the hydroxylaminato unit capable of dimerising through the oxygen atoms. This leads to the dimeric complexes [(Ln(C5H5)2{μ‐η12‐ON(C2H4o‐Py)2})2] without metal–pyridine bonds. Compound 7 exhibits a dimeric coordination mode similar to the complexes 5 and 6 , but, in addition, two pyridyl functions coordinate to the lanthanum atoms leading to the [(La(C5H5)2{ON(C2H4o‐Py)}{μ‐η12‐ON(C2H4‐η1o‐Py)})2] complex. The aggregation trend is directly related to the size of the metal ions. The complexes with coordinative pyridine–metal bonds show highly dynamic behaviour in solution. The two pyridine nitrogen atoms rapidly change their coordination to the metal atom at ambient temperature. Variable‐temperature (VT) NMR experiments showed that this dynamic exchange can be frozen on the NMR timescale.  相似文献   

11.
Lanthanide coordination polymers {[Ln(PTMTC)(EtOH)2H2O] ? x H2O, y EtOH} [Ln=Tb ( 1 ), Gd ( 2 ), and Eu ( 3 )] and {[Ln(αH? PTMTC)(EtOH)2H2O] ? x H2O, y EtOH} [Ln=Tb ( 1′ ), Gd ( 2′ ), and Eu ( 3′ )] have been prepared by reacting LnIII ions with tricarboxylate‐perchlorotriphenylmethyl/methane ligands that have a radical (PTMTC3?) or closed‐shell (αH? PTMTC3?) character, respectively. X‐ray diffraction analyses reveal 3D architectures that combine helical 1D channels and a fairly rare (6,3) connectivity described with the (42.8)?(44.62.85.104) Schäfli symbol. Such 3D architectures make these polymers porous solids upon departure of the non‐coordinated guest‐solvent molecules as confirmed by the XRD structure of the guest‐free [Tb(PTMTC)(EtOH)2H2O] and [Tb(αH? PTMTC)(EtOH)2H2O] materials. Accessible voids represent 40 % of the cell volume. Metal‐centered luminescence was observed in TbIII and EuIII coordination polymers 1′ and 3′ , although the LnIII‐ion luminescence was quenched when radical ligands were involved. The magnetic properties of all these compounds were investigated, and the nature of the {Ln–radical} (in 1 and 2 ) and the {radical–radical} exchange interactions (in 3 ) were assessed by comparing the behaviors for the radical‐based coordination polymers 1 – 3 with those of the compounds with the diamagnetic ligand set. Whilst antiferromagnetic {radical–radical} interactions were found in 3 , ferromagnetic {Ln–radical} interactions propagated in the 3D architectures of 1 and 2 .  相似文献   

12.
Solvent free high‐temperature oxidations of rare earth metals with the heterocycle pyrazole as well as in low to non‐coordinating solvents were investigated to isolate intermediate stages between monomeric and polymeric pyrazolates of the lanthanides. Reaction conditions were tuned according to simultaneous DTA/TG and temperature dependent X‐ray powder diffraction experiments on known monomeric and polymeric pyrazolates, that gave rise to the idea that further structure intermediates could be isolated. Reactions in 1,2,3,4‐tetrahydroquinoline gave the dimeric complex [Gd2(Pz)6(PzH)4](PzH)(Tech) ( 1 ) as well as the triangular complex [Nd3(Pz)9(PzH)2](PzH)(Tech)2 ( 2 ). The solvent free melt synthesis resulted in a new polymeric form of ( 3 ) (pyrazole, PzH = C3H3NNH; pyrazolate anion, Pz? = C3H3NN?; 1,2,3,4‐tetrahydroquinoline, Tech = C9H13N). All three compounds contain coordinating pyrazolate amide groups and pyrazole molecules the latter decreasing in numbers upon condensation of the building units. According to simultaneous DTA/TG/MS investigations the condensation process can be identified with the release of pyrazole molecules. 1 consists of dimeric molecules containing trivalent gadolinium with a C.N. of eight. The two gadolinium atoms show different coordination polyhedra. Only σ coordination and bridging is found for 1 . 2 consists of trimeric molecules containing trivalent neodymium. The neodymium atoms also exhibit different coordination polyhedra with C.N.s of eight and nine. Both π and σ coordination is found for 2 , the π coordinating pyrazolate ligands acting as lids of the triangular units. Topological analysis of the electron localization function (ELF) for 2 calculated at the scalar‐relativistic DFT level reveals only weakly covalent π donor η5‐Pz–Nd interactions compared to the stronger covalent σ donor Pz–Nd interactions. The topological analysis of both, the ELF and the electron density reveals no significant differences of the respective charges of the Nd atoms. 3 exhibits a one‐dimensional chain structure with EuII and a C.N of ten. It can thus be addressed the β form of the referring formula with a new arrangement of the coordinating ligands. Like the α form 3 shows σ and π coordination of pyrazole and pyrazolate ligands. Simultaneous DTA/TG analysis reveals that the low‐temperature α form shows a phase transition into the β form between 110 °C and 130 °C. The three compounds were investigated by low‐temperature single crystal X‐ray analysis, Mid IR and Far IR spectroscopy.  相似文献   

13.
The polymeric title compounds, namely catena‐poly[[[di‐μ‐but‐2‐enoato‐κ3O:O,O′;κ3O,O′:O′‐bis[diaquadibut‐2‐enoato‐κO2O,O′‐neodymium(III)]]‐μ‐4,4′‐bipyridyl N,N′‐dioxide‐κ2O:O′] 4,4′‐bipyridyl N,N′‐dioxide solvate] and the erbium(III) and yttrium(III) analogues, {[Ln2(C4H5O2)6(C10H8N2O2)(H2O)4]·C10H8N2O2}n (Ln = Nd, Er and Y), form from [Ln2(bt)6(H2O)4] dimers (bt is but‐2‐enoate) bridged by 4,4′‐bipyridyl dioxide (bno) spacers into sets of parallel chains; these linear arrays are interconnected by aqua‐mediated hydrogen bonds into broad two‐dimensional structures, which in turn interact with each other though the hydrogen‐bonded bridged bno solvent units. Both independent bno units in the structures are bisected by symmetry centres.  相似文献   

14.
A series of 12 dinuclear complexes [Ln2Cl6(μ‐4,4′‐bipy)(py)6], Ln=Y, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, ( 1 – 12 , respectively) was synthesized by an anhydrous solvothermal reaction in pyridine. The complexes contain a 4,4′‐bipyridine bridge and exhibit a coordination sphere closely related to luminescent lanthanide MOFs based on LnCl3 and 4,4‐bipyridine. The dinuclear complexes therefore function as a molecular model system to provide a better understanding of the luminescence mechanisms in the Ln‐N‐MOFs ${\hbox{}{{\hfill 2\atop \hfill \infty }}}$ [Ln2Cl6(4,4′‐bipy)3] ? 2(4,4′‐bipy). Accordingly, the luminescence properties of the complexes with Ln=Y, Sm, Eu, Gd, Tb, Dy, ( 1 , 4 – 8 ) were determined, showing an antenna effect through a ligand–metal energy transfer. The highest efficiency of luminescence is observed for the terbium‐based compound 7 displaying a high quantum yield (QY of 86 %). Excitation with UV light reveals typical emission colors of lanthanide‐dependent intra 4f–4f‐transition emissions in the visible range (TbIII: green, EuIII: red, SmIII: salmon red, DyIII: yellow). For the GdIII‐ and YIII‐containing compounds 6 and 1 , blue emission based on triplet phosphorescence is observed. Furthermore, ligand‐to‐metal charge‐transfer (LMCT) states, based on the interaction of Cl? with EuIII, were observed for the EuIII compound 5 including energy‐transfer processes to the EuIII ion. Altogether, the model complexes give further insights into the luminescence of the related MOFs, for example, rationalization of Ln‐independent quantum yields in the related MOFs.  相似文献   

15.
The tris(2,4‐dimethylpentadienyl) complexes [Ln(η5‐Me2C5H5)3] (Ln = Nd, La, Y) are obtained analytically pure by reaction of the tribromides LnBr3·nTHF with the potassium compound K(Me2C5H5)(thf)n in THF in good yields. The structural characterization is carried out by X‐ray crystal structure analysis and NMR‐spectroscopically. The tris complexes can be transformed into the dimeric bis(2,4‐dimethylpentadienyl) complexes [Ln2(η5‐Me2C5H5)4X2] (Ln, X: Nd, Cl, Br, I; La, Br, I; Y, Br) by reaction with the trihalides THF solvates in the molar ratio 2:1 in toluene. Structure and bonding conditions are determined for selected compounds by X‐ray crystal structure analysis and NMR‐spectroscopically in general. The dimer‐monomer equilibrium existing in solution was investigated NMR‐spectroscopically in dependence of the donor strength of the solvent and could be established also by preparation of the corresponding monomer neutral ligand complexes [Ln(η5‐Me2C5H5)2X(L)] (Ln, X, L: Nd, Br, py; La, Cl, thf; Br, py; Y, Br, thf). Finally the possibilities for preparation of mono(2,4‐dimethylpentadienyl)lanthanoid(III)‐dibromid complexes are shown and the hexameric structure of the lanthanum complex [La6(η5‐Me2C5H5)6Br12(thf)4] is proved by X‐ray crystal structure analysis.  相似文献   

16.
By using the node‐and‐spacer approach in suitable solvents, four new heterotrimetallic 1D chain‐like compounds (that is, containing 3d–3d′–4f metal ions), {[Ni(L)Ln(NO3)2(H2O)Fe(Tp*)(CN)3] ? 2 CH3CN ? CH3OH}n (H2L=N,N′‐bis(3‐methoxysalicylidene)‐1,3‐diaminopropane, Tp*=hydridotris(3,5‐dimethylpyrazol‐1‐yl)borate; Ln=Gd ( 1 ), Dy ( 2 ), Tb ( 3 ), Nd ( 4 )), have been synthesized and structurally characterized. All of these compounds are made up of a neutral cyanide‐ and phenolate‐bridged heterotrimetallic chain, with a {? Fe? C?N? Ni(? O? Ln)? N?C? }n repeat unit. Within these chains, each [(Tp*)Fe(CN)3]? entity binds to the NiII ion of the [Ni(L)Ln(NO3)2(H2O)]+ motif through two of its three cyanide groups in a cis mode, whereas each [Ni(L)Ln(NO3)2(H2O)]+ unit is linked to two [(Tp*)Fe(CN)3]? ions through the NiII ion in a trans mode. In the [Ni(L)Ln(NO3)2(H2O)]+ unit, the NiII and LnIII ions are bridged to one other through two phenolic oxygen atoms of the ligand (L). Compounds 1 – 4 are rare examples of 1D cyanide‐ and phenolate‐bridged 3d–3d′–4f helical chain compounds. As expected, strong ferromagnetic interactions are observed between neighboring FeIII and NiII ions through a cyanide bridge and between neighboring NiII and LnIII (except for NdIII) ions through two phenolate bridges. Further magnetic studies show that all of these compounds exhibit single‐chain magnetic behavior. Compound 2 exhibits the highest effective energy barrier (58.2 K) for the reversal of magnetization in 3d/4d/5d–4f heterotrimetallic single‐chain magnets.  相似文献   

17.
Three series of copper–lanthanide/lanthanide coordination polymers (CPs) LnIIICuIICuI(bct)3(H2O)2 [Ln=La ( 1 ), Ce ( 2 ), Pr ( 3 ), Nd ( 4 ), Sm ( 5 ), Eu ( 6 ), Gd ( 7 ), Tb ( 8 ), Dy ( 9 ), Er ( 10 ), Yb ( 11 ), and Lu ( 12 ), H2bct=2,5‐bis(carboxymethylmercapto)‐1,3,4‐thiadiazole acid], LnIIICuI(bct)2 [Ln=Ce ( 2 a ), Pr ( 3 a ), Nd ( 4 a ), Sm ( 5 a ), Eu ( 6 a ), Gd ( 7 a ), Tb ( 8 a ), Dy ( 9 a ), Er ( 10 a ), Yb ( 11 a ), and Lu ( 12 a )], and LnIII2(bct)3(H2O)5 [Ln=La ( 1 b ), Ce ( 2 b ), Pr ( 3 b ), Nd ( 4 b ), Sm ( 5 b ), Eu ( 6 b ), Gd ( 7 b ), Tb ( 8 b ), and Dy ( 9 b )] have been successfully constructed under hydrothermal conditions by modulating the reaction time. Structural characterization has revealed that CPs 1 – 12 possess a unique one‐dimensional (1D) strip‐shaped structure containing two types of double‐helical chains and a double‐helical channel. CPs 2 a – 12 a show a three‐dimensional (3D) framework formed by CuI linking two types of homochiral layers with double‐helical channels. CPs 1 b – 9 b exhibit a 3D framework with single‐helical channels. CPs 6 b and 8 b display visible red and green luminescence of the EuIII and TbIII ions, respectively, sensitized by the bct ligand, and microsecond‐level lifetimes. CP 8 b shows a rare magnetic transition between short‐range ferromagnetic ordering at 110 K and long‐range ferromagnetic ordering below 10 K. CPs 9 a and 9 b display field‐induced single‐chain magnet (SCM) and/or single‐molecule magnet (SMM) behaviors, with Ueff values of 51.7 and 36.5 K, respectively.  相似文献   

18.
Monocationic bis‐allyl complexes [Ln(η3‐C3H5)2(thf)3]+[B(C6X5)4]? (Ln=Y, La, Nd; X=H, F) and dicationic mono‐allyl complexes of yttrium and the early lanthanides [Ln(η3‐C3H5)(thf)6]2+[BPh4]2? (Ln=La, Nd) were prepared by protonolysis of the tris‐allyl complexes [Ln(η3‐C3H5)3(diox)] (Ln=Y, La, Ce, Pr, Nd, Sm; diox=1,4‐dioxane) isolated as a 1,4‐dioxane‐bridged dimer (Ln=Ce) or THF adducts [Ln(η3‐C3H5)3(thf)2] (Ln=Ce, Pr). Allyl abstraction from the neutral tris‐allyl complex by a Lewis acid, ER3 (Al(CH2SiMe3)3, BPh3) gave the ion pair [Ln(η3‐C3H5)2(thf)3]+[ER31‐CH2CH?CH2)]? (Ln=Y, La; ER3=Al(CH2SiMe3)3, BPh3). Benzophenone inserts into the La? Callyl bond of [La(η3‐C3H5)2(thf)3]+[BPh4]? to form the alkoxy complex [La{OCPh2(CH2CH?CH2)}2(thf)3]+[BPh4]?. The monocationic half‐sandwich complexes [Ln(η5‐C5Me4SiMe3)(η3‐C3H5)(thf)2]+[B(C6X5)4]? (Ln=Y, La; X=H, F) were synthesized from the neutral precursors [Ln(η5‐C5Me4SiMe3)(η3‐C3H5)2(thf)] by protonolysis. For 1,3‐butadiene polymerization catalysis, the yttrium‐based systems were more active than the corresponding lanthanum or neodymium homologues, giving polybutadiene with approximately 90 % 1,4‐cis stereoselectivity.  相似文献   

19.
The reactivity of the mono(pentamethylcyclopentadienyl) divalent lanthanide tetraphenylborate complexes, (C5Me5)Ln(BPh4) (Ln = Sm, 1; Yb, 2), was investigated to determine how Ln2+ and (BPh4)1? reactivity would combine in these species. The (BPh4)1? ligand in (C5Me5)Yb(BPh4) can be displaced with KN(SiMe3)2 to form the heteroleptic divalent dimer, {(C5Me5)Yb[μ-N(SiMe3)2]}2 (3). Both 1 and 2 reduce phenazine to give the bis(pentamethylcyclopentadienyl) ligand redistribution products, [(C5Me5)2Ln]2(μ-C12H8N2). 2,2-Bipyridine is reduced by 1 to yield the ligand redistribution product, (C5Me5)2Sm(C10H8N2) (4), while 2 does not react with bipyridine. Tert-butyl chloride is reduced by 1 to form the trimetallic pentachloride complex [{(C5Me5)(THF)Sm}3(μ-Cl)5][BPh4] (6), in a reaction that appears to use the reductive capacity of both Sm2+ and (BPh4)1?.  相似文献   

20.
Thiophosphinate Complexes of Lanthanides. I. Dimeric Dimethylthiophosphinate Compounds of LaIII, PrIII, NdIII, and ErIII By reaction of Na[(CH3)2POS] · 1,5 H2O with Ln(ClO4)3 (Ln ? La, Pr, Nd, Er) neutral dimeric complexes are formed. The crystal and molecular structures of [Pr((CH3)2POS)3(C2H5OH)(C3H7OH)]2, [Pr((CH3)2POS)3 · 3 H2O]2 · 4 H2O and [Er((CH3)2POS)3(H2O)2]2 have been determined by single crystal X-ray crystallography. The (CH3)2POS? ions are acting partly as bidentate chelates and partly as monodentate O-donors. The dimers are formed by doubly coordinating oxygen atoms of two ligands. Very strong intramolecular O? H…?S hydrogen bonds exist between noncoordinated S atoms and coordinated water molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号