首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract— We assume a model for bacteriorhodopsin chromophore such that the protonated retinal Schiff-base (PRSB) interacts with two anions in the case of light-adapted bacteriorhodopsin (bRL), while it does with one anion in the case of the acidified form of bacteriorhodopsin (bRacid600). On the basis of this model, the π-electronic states of all- trans -PRSB are calculated according to our LCAO-ASMO-SCF-CI method, the anions being approximated by negative point-charges in the plane of PRSB π-system. A possible distribution of the negative point-charges around PRSB is proposed for the chromophores of bRL, bRacid600, and the two irradiated forms of bRacid600 (the one at 3°C containing 9- cis -PRSB, and the other at — 72°C all- trans -PRSB). It is shown that the wavelength λmax of absorption maximum observed for each form of bacteriorhodopsin can be explained reasonably well by the suggested charge distribution. Furthermore, a model for the structure of the active site of bRL is proposed, considering that two COO groups form the anions that interact with PRSB. The calculated optical absorption of all- trans -PRSB at such a site is shown to be consistent with the observed absorption spectrum of bRL.  相似文献   

2.
Abstract— The dependence of the isomeric configuration of the retinylidene chromophore of bacteriorhodopsin on the pH value and on the wavelength of irradiation (in a photostationary state) were examined by high performance liquid chromatographic analyses of extracted retinal. The process of isomerization of the chromophore during light adaptation was also traced. More than 93% of all- trans and less than 5% of 13- cis retinal were extracted in the photostationary state for irradiation at 560 nm in the pH region of5–9 as well as for irradiation in the wavelength region of 400–650 nm at pH 7. Comparison of the above photostationary state composition with that of protonated n -butylamine Schiff base of retinal indicates that strong constraint is applied to the chromophore by the apo-protein. The constraint can be changed at low or high pH by a partial denaturation or transition of the apo-protein, which results in the generation of 11- cis retinal in the extract. At higher photon density, the isomerization process of the chromophore during light adaptation at pH 7 was characterized, as extracted isomeric retinal, by (1) the initial decrease in 13- cis and increase in all- trans , (2) a subsequent, transient toward the above photostationary state composition. The results are discussed in terms of both the photoisomerization pattern inherent in the retinylidene chromophore and the control by the apo-protein.  相似文献   

3.
Abstract— The photoreaction cycle of 13- cis -bacteriorhodopsin (13- cis -bR) was investigated by low temperature spectrophotometry using two different preparations; 13- cis -bR constituted from bacterioopsin and 13- cis -retinal, and dark-adapted bacteriorhodopsin (bRD), which is an equi-molar mixture of 13- cis -bR and trans -bR.
By irradiation with 500 nm light at — 190°C, 13- cis -bR was converted to its batho-product, batho-13- cis -bR (batho-bR13), which is different from batho-product from trans -bR, batho-bRt. On warming batho-bR13 to -5°C in the dark, it completely changed to trans -bR. We estimated the composition of 13- cis -bR and trans -bR in the warmed sample spectrophotometrically and then the absorption spectrum of batho-bR13 was calculated. The absorption maximum lies at 608 nm, 1250 cm−1 longer than that of 13- cis -bR; the molar extinction coefficient (ε) is about 74000 M −1 cm−1, larger than that of 13- cis -bR (52000 M −1 cm−1).
On the warming the sample containing batho-bR13 formed by irradiating 13- cis -bR or bRD at — 190°C, we could not detect other intermediates such as the lumi- or meta-intermediates seen in trans-bR system.  相似文献   

4.
Abstract— Bacteriorhodopsin (BR) from the purple membrane of Haiobacterium halobium contains covalently bound retinal in the 13- cis and all- trans configurations. Several forms of bacteriorhodopsin are known, with different absorption maxima which are designated as BRλmax (nm). At acidic pH, BR605 is formed from BR560. The following sequence of reactions was found, which is initiated by irradiation of BR605 with red light:

An all- trans /13- cis to 9- cis isomerisation occurs in the light induced reaction BR605 ∼ BR500. BR500 seems to contain covalently bound retinal, whereas BR390 contains free retinal. By irradiation with light, BR500, BR450 and BR390 can be reconverted to BR560.  相似文献   

5.
Abstract— Available pH effects on the absorption spectrum and on the rates of dark adaptation (all- trans → 13 -cis interconversion) of bacteriorhodopsin are analyzed in terms of a model based on protein-chromophore electrostatic interactions. Plausible locations of three protein acid-base groups controlling the spectrum and the activation energy of the thermal trans → 13- cis process are suggested. The importance of the protein charges in controlling the cycles of bacteriorhodopsin is indicated.  相似文献   

6.
Abstract— The reactions of hydroxylamine with bacteriorhodopsin in the states of the purple membrane, the brown holo-membrane andL–1690-solubilized monomers were studied in light and the dark. The bleaching rate was strongly dependent on the state of the bacteriorhodopsin and largely enhanced by light. Analysis of the isomeric composition of the resultant retinaloximes by high performance liquid chromatography (HPLC) showed that more all- trans retinaloximes were present in the dark than 13- cis retinaloximes. However, under illumination, the relative amounts of 13- cis retinaloximes increased greatly, indicating the occurrence of trans to cis isomerization during the photochemical cycle of bacteriorhodopsin. Molar extinction coefficients of 13- cis retinaloximes were determined to estimate the isomeric composition of retinaloximes by HPLC analysis.  相似文献   

7.
Abstract Crystals of all- trans retinal and both different forms of 11- cis , 12-s- cis retinal were grown on quartz slides with faces (101), (001) and (101), respectively, forming thin platelets of less than 0.2 μm thickness. Polarized UV absorption spectra at room temperature were measured in the range from 20 to 43 × 103 cm−1 with a microscope-spectrophotometer. In this spectral range three diffuse absorption bands were observed for all crystal types at similar wave numbers. A main absorption band was found at 25–28 × 103 cm−1, and two further bands at 32–34 and 38–40 × 103 cm−1. In case of all- trans retinal the latter band is by far the weakest in this spectral range. Additionally, the crystal spectrum of all- trans retinal shows a shoulder at the low wavenumber side of the main band which cannot be resolved in the corresponding solution spectrum. In the crystal spectra of 11- cis , 12-s- cis retinal, however, only a strong dissymmetry is observed at this side of the main band.  相似文献   

8.
Abstract— Retinochrome is a photopigment found in the visual cells of cephalopods. It has been considered to act as a supplier of the 11- cis -retinal required for synthesis of rhodopsin, because its all-trans chromophore is isomerized to 11- cis form in the light. Light and thermal reactions of squid retinochrome were investigated by low-temperature spectrophotometry.
On irradiation with green light at liquid-nitrogen temperature, retinochrome (λmax 496 nm, – 190°C) is converted mainly to an intermediate lumiretinochrome (λmax 475 nm, – 190°C), its chromophore being changed to 11- cis -retinal. On irradiation with blue light at - 190°C, retinochrome is changed to a photosteady–state mixture (λmax 487 nm, – 190°C) composed mainly of retinochrome and lumiretinochrome, since lumiretinochrome is partially regenerated back to retinochrome. Similarly, irradiation of lumiretinochrome with blue light also results in the same photosteady-state mixture, which can be completely reverted to lumiretinochrome on re-irradiation with green light.
Lumiretinochrome is stable at a wide range of temperatures from – 190°C to about – 20°C. Above – 20°C, it is further converted, thermally, into metaretinochrome (λmax 470 nm), which is the same bleached product as has been observed on irradiation of retinochrome at room temperatures. Thus, the light-bleaching process of retinochrome is rather simple compared with that of rhodopsin.  相似文献   

9.
Abstract— The quantum efficiencies of intersystem crossing (ISC) fur four isomers of retinal, the all- trans , 9- cis , 11- cis and 13- cis , have been measured using both 265 nm and 353 nm excitation. The values for the all- trans and 9- cis isomers are independent of the excitation wavelength but the values for the 11- cis and 13- cis isomers show a marked increase in the efficiency of ISC for 353 nm excitation compared with the 265 nm excitation.  相似文献   

10.
Schiff bases were prepared from all- trans -retinal (I) and pyrrolidine perchlorate (II) and from I and n-butyl amine, protonated with anhydrous hydrogen chloride gas, Ill. Initial quantum yields of trans → cis photoisomerization (Φ°PI) were determined and primary photoproducts and product ratios were measured in aerated methanol. Φ°PI of all- trans -III is independent of excitation energy. All analyses were made using high-pressure liquid chromatographic (LC) methods. It was necessary to hydrolize the Schiff bases to corresponding retinals prior to LC analysis.  相似文献   

11.
Abstract— Photoisomerization and photooxygenation of all- trans retinal in acetonitrile, illuminated by laser radiations (λact, = 333.6 or 350.7 nm), were investigated under various experimental conditions. In deoxygenated solutions, the major photoproducts are 13- cis and 9- cis retinal. All- trans and 13- cis 5,8-peroxyretinal are obtained in large amounts in oxygenated solutions. 11-cis derivatives have not been detected in any of these solutions. The photoproducts were identified by UV, NMR, mass and vibrational spectroscopies and HPLC chromatography. All- trans and 13- cis 5,8-peroxyretinal were isolated. Their vibrational spectra (IR and Raman) are analyzed. Most of the bands are assigned by comparison with previous studies on all- trans and 13- cis retinal, ( E,E,E )-3-methyl-2,4,6-octatrienal and peroxides.  相似文献   

12.
Abstract— The absorption spectroscopic study of retinyl polyenes, i.e. all- trans retinal, 9- cis retinal, 13- cis retinal, all- trans retinol, 13- cis retinol and all- trans retinyl acetate in solid films is discussed. The spectra of the films with low surface coverages obtained from dilute solutions are red shifted relative to their solution spectra. This shift is interpreted as due to the weak interaction between the surface and polyene molecules. With increased surface coverages, i.e. the films obtained from concentrated solutions, the retinals show a large red shift whereas a blue shift is observed with the retinols. Chromophore–chromophore interactions in addition to the surface effects are believed to be responsible for such observations. Effect of surface causing permanent changes in molecule is also discussed.  相似文献   

13.
Abstract— The composition of retinal isomers in bacteriorhodopsin (bR) in purple membrane (PM) was determined by photoelectric response measurements using a sandwich-type electrochemical cell. The measured amplitude of the photocurrent obtained from a dark-adapted sample was 55% lower than that from a light-adapted sample. This ratio, 55:45, would correspond to the 13- cis /aU- trans isomer ratio of retinal in the dark if the 13- cis form of the pigment did not give a response. This amplitude change correlated with the visible spectral shift of bR. The isomer ratio in the dark depended only weakly on the temperature of the electrolyte, whereas the retinal isomerization rate strongly depended on the temperature and the pH of the electrolyte in the cell. Our results indicate that photoelectric response is elicited only by a species originating from bR containing all- trans retinal and that the behavior of the response in the dark is associated with the pKa of the proton release kinetics of Asp-85.  相似文献   

14.
Abstract —The triplet states of the n -butyl-amine Schiff bases of 11- cis , 9- cis , 13- cis and all- trans retinal are produced via triplet-triplet energy transfer. Their absorption spectra, peaking around 435 nm, and their decay kinetics are recorded using pulsed-laser photolysis. Direct-excitation (φDISO) and triplet-sensitized (φTISO) photoisomerization yields, determined using steady irradiation methods, are found to be: φTISO (9- cis ) = 0.06, φTISO (11- cis ) = 045, φTISO (13- cis ) = 008, φTISO (all- trans ) = 0.02-0.05, φDISO (11- cis , = (4 ± 1) × 10-3, φDISO (all- trans ) = (2 ± 1) × 10-3. The possible role of the triplet state in the isomerization of rhodospin is discussed.  相似文献   

15.
Abstract -The semiconduction and photoconduction currents through 1-ml thick sandwich cells of all-trans-, 13- cis- , 11- cis -retinal-, and 13- cis -retinal-m-nitroaniline-hydrogen chloride were measured as a function of the temperature in both the crystalline and melted states. From the slopes of graphs of the log of the current against 1000/TGK, the activation energies for semiconduction and photoconduction were calculated using the conductivity equations for the band model. The results of the average semiconduction activation energy measurements fell into two categories: The first group has activation energies between 1.9 and 2.4 eV and includes crystalline all- trans- , 13- cis -,9 cis -retinal, and both crystalline and melted 13- cis -retinal- m -nitroanaline hydrogen chloride; the second group has activation energies between 3.1 and 3.6 eV and includes crystalline 11- cis -retinal samples shorted. The average photoconduction activation energy for crysalline 13- cis - and 11- cis -retinal, being 0.25 and 0.24 eV respectively, were essentially identical within experimental error, whereas the same parameter for 13- cis -retinal- m -nitroaniline hydrogen chloride was considerably lower at 0.15 eV. All- trans -retinal was not measurably photoconductive and 9- cis -retinal was only slightly photoconductive.  相似文献   

16.
Abstract— Squid opsin which is capable of combining with 11- cis or 9- cis retinal to reconstitute photo-pigment has been prepared by irradiation of rhabdomal membranes with orange light (> 530 nm) in the presence of 0.2 M hydroxylamine. When the irradiation is carried out either at concentrations of hydroxylamine higher than 0.2 M or with light of wavelength shorter than 530 nm, rhodopsin in the membranes is bleached quickly, but the ability of the resultant opsin to form rhodopsin is greatly reduced.
The optimum pH for rhodopsin regeneration in rhabdomal membranes was found to be between 6.5 and 8.5. The rate of regeneration of rhodopsin increases with raising temperature, and at about 20°C it is almost the same as that of isorhodopsin. Even after solubilization in digitonin solution, opsin still preserves the ability to reform rhodopsin.
All- trans retinal can be incorporated into retinochrome-bearing membranes, in which it is isomerized into 11- cis isomer by the photoisomerase activity of retinochrome. Rhabdomal membranes retaining active opsin can take up 11- cis retinal from retinochrome membranes so as to synthesize rhodopsin.  相似文献   

17.
Abstract— The photocycle of bacteriorhodopsin (bR) and its perturbed forms are investigated by a time-resolved resonance Raman study. These experiments were performed in the C=C stretching and in the fingerprint spectral regions for the acid blue, acid purple and deionized forms of bR.
The main observations are as follows: (1) isomerization of the retinal, from all- trans to 13- cis , occurs in native bR and in all of the acid and deionized perturbed bR species; (2) formation of the early intermediates (the K610 and L550 analogues) also occur in native bR and in all of the perturbed species; and (3) deprotonation of the protonated Schiff base (PSB), to give the M412 type intermediate, occurs in native bR, but is inhibited in all of the perturbed bR species on the time-scale of the native bR photocycle.
The results show that isomerization alone is not a prerequisite for the PSB deprotonation process. The observed photocycle, initiated with retinal isomerization, is found to occur from all- trans to 13- cis in all of the perturbed forms of bR. In addition, the results imply that removal of the cations, of an increase in the hydrogen ion concentration, prevent only the PSB deprotonation process and not the formation of earlier cycle intermediates. Some attention is focused on the two blue forms of bR (acid and deionized) due to the fact that their ground-state absorption maximum, unphotolyzed Raman spectra, and Raman spectra changes during the photocycle are all very similar. The similarities between the acid blue and deionized blue forms in the fingerprint region support previous suggestions that both blue species have nearly the same retinal active site.  相似文献   

18.
Abstract— A method for the analytical separation of retinal isomers such as 13- cis , 11- cis , 9- cis and all- trans retinal, dissolved in aqueous solutions of detergents, is described. The retinals are extracted by means of a non-isomerizing procedure and separated by HPLC on an octadecyl silane column used in normal phase. This column retains detergents without deteriorating and gives a satisfactory separation of retinal isomers with a resolution comparable with that obtained with silica gel column. The reliability of the method is verified by analysing the chromophore of visual pigment rhodopsin in digitonin solution, before and after irradiation with white light.  相似文献   

19.
Time-resolved, low-temperature resonance Raman spectra of triplet states of the carotenoids specifically present in bacterial reaction centers in a strained cis conformation have been obtained, thus demonstrating the possibility of studying intermediate transient states of these structures using resonance Raman spectroscopy. Resonance Raman spectra of triplet cis spheroidene and cis methoxyneurosporene present in reaction centers of Rhodopseudomonas spheroides, (strains 2.4.1. and Ga, respectively) exhibit marked differences with those of triplet, all- trans carotenoids previously studied in vitro. These differences, together with the frequency shifts measured for the v 1 modes, indicate that triplet carotenoids bound to reaction centers retain a cis conformation, and that probably no isomerization occurs to all- trans carotenoids upon T ← S0 excitation. Pi electron distributions along the polyene backbone are probably less regular in the triplet state than in the singlet ground state, although probably not to the extent suggested by previous theoretical calculations. The apparently anomalous behaviour of the v 2 bands of all- trans carotenoids upon T ← S0 excitation is shown to result largely from the actual complexity of this region of the Raman spectra, together with a weak participation of the v c—–c internal coordinate in the corresponding modes. Finally, the Raman scattering efficiency of triplet spheroidene bound to reaction centers is lower than that of the singlet, ground state form, under equivalent excitation conditions.  相似文献   

20.
Abstract— Results concerning absorption-emission spectra and fluorescence quantum yields at 77 and 298K. triplet absorption spectra, and quantum yields of intersystem crossing and photoisomerization at 298 K, are presented for 11- cis β-apo-14'-carotenal (C22-Ald), the immediate higher homologue of 11- cis retinal. The absorption spectra are characterized by two band-systems with maxima at 390–400 and 270–280 nm, respectively. Upon cooling from 298 to 77 K, the intensities of these two band-systems undergo changes in opposite directions indicating 12-s- cis: 12- s-trans conformational changes. No intermediate band-system analogous to the one located at 270–310 nm in cis retinals is observed for 11- cis C22-Ald. In nonpolar hydrocarbon solvents (e. g. cyclohexane) at room temperature, quantum yields of fluorescence (0.01), intersystem crossing (0.6) and photoisomerization (0.4) are all quite pronounced. The photophysical and photochemical properties of 11- cis C22-Ald are discussed in the light of similarities and dissimilarities with those of all- trans C22-Ald and 11- cis retinal under comparable conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号