首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
用小角/广角X射线散射(SAXS/WAXS)联用的实验方法考察了等温结晶温度(Tc)和等温时间对聚(ε-己内酯)(PCL)片晶形态的影响.根据WAXS数据计算了PCL的重量结晶度,进而求得其体积结晶度Vc(WAXS).在不同Tc下结晶的PCL样品的Vc(WAXS)均略高于50%.对SAXS谱线做一维相关函数(1DCF)分析,得到了PCL的片晶长周期(LP)和无定形层厚度(La).通过比较WAXS及SAXS的数据分析结果,认为PCL晶体需用"三相模型"予以描述,其过渡层厚度(E)约为LP的15%~18%,对片晶形态具有重要影响.随着Tc升高,PCL晶体的Lc、La及E均逐渐增大,但Lc的变化率最大,这使得结晶度上升.在50℃等温结晶不同时间,发现Lc随延长时间显著增加,而La及E则不断减小.等温10天后,PCL晶体的SAXS谱线上可观察到5级散射,表明片晶相当完善.  相似文献   

2.
Summary: The annealing and melting behavior of poly[(R)‐3‐hydroxybutyrate] (P(3HB)) single crystals were followed in real time by synchrotron small‐ (SAXS) and wide‐angle X‐ray scattering (WAXS) measurements. The real‐time SAXS measurements revealed that the P(3HB) single crystal exhibits a discontinuous increase of lamellar thickness during heating. The structural changes as observed by SAXS and WAXS were in response to the thermal properties of single crystals characterized by differential scanning calorimetry.

A series of two‐dimensional small‐angle X‐ray scattering patterns of P(3HB) single crystal mats during the lamellar thickening process.  相似文献   


3.
We studied the structure of short ethylene glycol (EG) chains with N repeating units (EGN, N = 3, 6, 9, 12, and 15) connected to hydrophobic dihexadecyl chains by means of a combination of differential scanning calorimetry (DSC) and small- and wide-angle X-ray scattering (SAXS/WAXS). These synthetic amphiphiles dispersed in water form planar lamellar stacks and hexagonal cylinders confining the EG chains to restricted geometries. Owing to the self-assembly of the anchoring points, the lateral density of EG chains in planar lamella can be quantitatively controlled. Furthermore, the chain-melting phase transition of the anchors enables us to "switch" the intermolecular distance reversibly. SAXS/WAXS results suggest that the shorter EG chains (N = 3, 6, and 9) assume a helical conformation in stacks of planar lamella. When the EG chains are further elongated (N = 12 and 15), the lamellar periodicities cannot be explained by a linear extrapolation of shorter oligomers, but can be interpreted well as polymer brushes following the scaling theorem. Such rich phase behaviors of EGN molecules can be used as a simple model of oligo/poly-saccharide chains on cell surfaces, which act not only as flexible repellers between neighboring cells but also as stable spacers for functional ligands.  相似文献   

4.
The phase behavior of a natural nontronite clay was studied for size-selected particles by combining osmotic pressure measurements, visual observations under polarized light, and rheological experiments. In parallel, the positional and orientational correlations of the particles were analyzed by small-angle X-ray scattering. Aqueous suspensions of nontronite exhibit a true isotropic/nematic (I/N) transition that occurs before the sol/gel transition, for ionic strengths below 10(-3) M/L. In this region of the phase diagrams, the system appears to be purely repulsive. The I/N transition shifts toward lower volume fractions for increasing particle anisotropy, and its position in the phase diagram agrees well with the theoretical predictions for platelets. SAXS measurements reveal the presence of characteristic interparticular distances in the isotropic, nematic, and gel phases. The swelling law (separation distance vs swelling law) exhibits two regimes. For high volume fractions, the swelling law is one-dimensional as in layered systems and reveals the presence of isolated platelets. At lower volume fraction, distances scale as phi(-1/3), indicating isotropic volumic swelling. Finally, the experimental osmotic pressure curves can be satisfactorily reproduced by considering the interparticle distances between two charged planes whose effective charge is around 10% of the structural charge.  相似文献   

5.
Uniaxially orienred semicrystalline poly(ethylene terephthalate) (PET) and poly(propylene) (PP) films were loaded parallel to draw direction at various temperatures. Changes in the submicroscopical structure of the films under load were examined by small and wide-angle x-ray scattering (SAXS; WAXS) and birefringence measurements. WAXS measurements reveal a decrease of the initial high orientation of the chains in the crystallites during deformation. Simultaneously, an increase of the birefringence was detected, indicating an orientation of chains in the amorphous regions. The alteration of the long period reflections in the SAXS patterns give strong evidence that lamellar stacks with different orientation angles according to load direction are present. Depending on the orientation of stacks, the contribution of lamellar separation to sample deformation alters, giving rise to different amounts of density changes in the stacks. Absolute intensity measurements of SAXS using a Kratky apparatus reveal that lamellar separation occurs preferentially below or in the range of the glass-transition temperature at small strain. With increasing strain and temperatures above the glass-transition slip deformation mechanisms become more important. The formation of microvoids was observed at strain near to elongation at break below or in the range of glass-transition temperature.  相似文献   

6.
Rolled smaples of nylon-11 annealed in formic acid (90%) at 80°C remain doubly oriented and have the same allotropic form as filter mats of single crystals. the basal planes of the crystals are parallel to (00l) planes. the long spacing is larger than in filter mats. Experimental swelling results obtained on such samples are discussed on the basis of two extreme models, the lamellar and the switchboard models. The long spacing dy and the length of the sample (along 0Y) change reversibly by the same proportion during swelling. Insertion of solvent between lamellae is invoked to explain such changes of dimension. As linear swelling ratios computed from macroscopic dimensions and SAXS measurements can reach 100%, lamellar crystals are only bonded by a few chains. The large increase of the SAXS intensity observed when annealed doubly oriented samples of nylon-11 are wetted with allylic alcohol cannot be explained on the basis of the switchboard model but only with a three-phase lamellar model. These three phases are the crystalline phase, the fold region, and a dilute solution of polymer in the swelling agent.  相似文献   

7.
The main-chain thermotropic liquid-crystalline poly(heptane-1,7-diyl biphenyl-4,4′-dicarboxylate) (P7MB) was investigated by time-resolved small-angle X-ray scattering (SAXS), wide-angle X-ray scattering (WAXS), and differential scanning calorimerty (DSC). Nonisothermal crystallisation with different rates of cooling and heating was used. On cooling, two phase transitions are observed, isotropic melt - smectic (I-Sm) and Sm- three-dimensional crystalline structure (Sm-Cr), whereas on heating only one transition is observed, Cr-I transition. The transition enthalpies were calculated. Temperature dependences of d-spacings of all crystalline peaks and of the peak observed at high values of scattering vector in the SAXS region were derived. The temperature dependence of the degree of crystallinity was established, based on the integrated intensities of the crystalline peaks and amorphous halo in WAXS.  相似文献   

8.
The micro- and mesoscopic structure of reverse Pluronic 25R4 in aqueous mixtures has been studied by SANS, SAXS and shear rheology. These techniques have been able to give a deep insight into the complex structure of the system phase diagram, that includes an isotropic water-rich liquid phase L(1), and liquid crystalline phases with hexagonal, E, or lamellar order, D. Particular attention has been paid to the isotropic water-rich phase L(1), which has a large stability region in the temperature-composition phase diagram. This region is crossed by a large "cloudy zone". Below it, namely at low temperature and composition, SANS data show the presence of polymer unimers in a gaussian coil conformation. Above the "cloudy zone", at higher temperature and composition, the L(1) phase is structured as a network of interconnected multimeric micelles. Rheology adds information about the structuring of the L(1) phase showing its incipient hexagonal pre-structuring. This technique is also able to highlight the defective structure of the E phase itself. In the temperature and concentration ranges in which a lamellar phase D is present, SANS and SAXS results are in complete agreement, showing how interlamellar distance is influenced by both polymer composition and temperature according to an "ideal deswelling" or a "not ideal swelling" mechanism. In addition, in the D phase rheology suggests the presence of densely packed vesicles.  相似文献   

9.
The temperature dependence of thermal, morphological, and rheological properties of amphiphilic polyurethanes was examined with differential scanning calorimetry (DSC), wide‐angle X‐ray scattering (WAXS), small‐angle X‐ray scattering (SAXS), rheological measurements, and Fourier transform infrared spectroscopy. Multiblock (MPU) and triblock (TPU) polyurethanes were synthesized with two crystallizable segments—poly(ethylene oxide) (PEO) as a hydrophilic block and poly(tetramethylene oxide) (PTMO) as a hydrophobic block. DSC and WAXS measurements demonstrated that the microphase of MPUs in the solid state is dominantly affected by the PEO crystalline phase. However, high‐order peaks were not observed in the SAXS measurements because the crystallization of the PEO segments in MPUs was retarded by poor sequence regularity. The microphase in the melt state was induced by the hydrogen bonding between the N? H group of hexamethylene diisocyanate linkers and the ether oxygen of PEO or PTMO blocks. As the temperature increased, the smaller micro‐phase‐separated domains were merged into the larger domains, and the liquidlike ordering was eventually disrupted because of the weakening hydrogen bonding. However, the fully homogeneous state of an MPU with a molar ratio of 5/5 PEO/PTMO (MPU55) was not confirmed even at much higher temperatures with both SAXS and rheological measurements. However, the SAXS patterns of TPU showed weak but broad second‐order peaks below the melting temperature of the PEO block. Compared with MPU55, the ordering of the TPU crystalline lamellar stacks was enhanced because of the high sequence regularity and the low hydrogen‐bonding density. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 2365–2374, 2003  相似文献   

10.
The information content in 1-D solution X-ray scattering profiles is generally restricted to low-resolution shape and size information that, on its own, cannot lead to unique 3-D structures of biological macromolecules comparable to all-atom models derived from X-ray crystallography or NMR spectroscopy. Here we show that contrast-matched X-ray scattering data collected on a protein incorporating specific heavy-atom labels in 65% aqueous sucrose buffer can dramatically enhance the power of conventional small- and wide-angle X-ray scattering (SAXS/WAXS) measurements. Under contrast-matching conditions the protein is effectively invisible and the main contribution to the X-ray scattering intensity arises from the heavy atoms, allowing direct extraction of pairwise distances between them. In combination with conventional aqueous SAXS/WAXS data, supplemented by NMR-derived residual dipolar couplings (RDCs) measured in a weakly aligning medium, we show that it is possible to position protein domains relative to one another within a precision of 1 ?. We demonstrate this approach with respect to the determination of domain positions in a complex between calmodulin, in which the four Ca(2+) ions have been substituted by Pb(2+), and a target peptide. The uniqueness of the resulting solution is established by an exhaustive search over all models compatible with the experimental data, and could not have been achieved using aqueous SAXS and RDC data alone. Moreover, we show that the correct structural solution can be recovered using only contrast-matched SAXS and aqueous SAXS/WAXS data.  相似文献   

11.
The influence of a polyampholyte, i.e., poly(N,N′-diallyl-N,N′-dimethyl-altmaleamic carboxylate) (PalH), on the lamellar liquid crystalline (LC) system sodium dodecyl sulfate (SDS)/decanol/water was investigated by means of microdifferential scanning calorimetry, small-angle X-ray diffraction (SAXS), and cryo-scanning electron microscopy. After incorporating PalH into the lamellar liquid crystalline system, SAXS measurements show that three different LC phases exist: i.e., a swelling, slightly swelling, and non-swelling one. At pH 4, the positively charged polymer with an extended conformation can directly adsorb at the anionic head groups of the surfactant and more compact vesicles are formed at room temperature. At pH 9, the electrostatic interactions between the polyampholyte (in a more coiled conformation) and the sulfate head groups of the SDS are leveled off and incompact vesicles are formed at room temperature. That means in presence of the polyampholyte the morphology of the LC phase, i.e., the supramolecular vesicle structure, can be tuned by varying the pH and/or the temperature.
Figure
pH-dependent tuning of the morphology of the lamellar phase  相似文献   

12.
Mesostructured lamellar nanocomposite films with alternating silica and organic layers containing poly(N-isopropropyl acrylamide) (PNIPAM) were prepared using evaporation-induced self-assembly. A suitable theoretical approach to analyze the small-angle X-ray scattering (SAXS) patterns of oriented lamellar two-phase systems was applied to the SAXS data of films of varying composition, providing details on the self-assembly process, the composition, and the polymerization. In particular, this approach allowed an accurate determination of the thickness of the silica and the organic layer. The applicability of the SAXS approach was carefully tested with simulated data and verified by thermogravimetric analysis (TGA). TGA and (13)C NMR were used to study the polymerization and linkage to the silica matrix. SAXS and time-resolved grazing incidence SAXS revealed that the phase transition of PNIPAM at ca. 32 degrees C leads to a reversible expansion/contraction perpendicular to the layers on a time scale of ca. 30 min.  相似文献   

13.
The aggregation structure of a novel polyimide ( PIM ‐ 6 ) with six methylene flexible spacing groups in biphenyl side chain synthesized by the traditional two‐step imidisation process was investigated by polarized light microscope (PLM), small angle X‐ray scattering (SAXS), wide angle X‐ray scattering (WAXS), and molecular simulation approach. The agreement between the experimental data and simulation result reveals that due to the predominant interchain interaction, each three backbones stack together to form a distinct lamellar cluster with side chains packed inside dispersedly. The thickness of the lamellar cluster is about 16.0 A°, corresponding to a strong peak at 5.5° in SAXS pattern. As the backbone is not perfectly parallel to each other in each lamellar cluster, the distance between each backbone ranges from 5.8 to 8.8 A° possibly relating to the weak peak at 9.8° in WAXS pattern. Meanwhile, no birefringence or apparent phase texture has been observed by PLM indicating an amorphous nature in this film. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2010  相似文献   

14.
Emulsions are excellent pharmaceutical vehicles used in both the pharmacy and cosmetic industries. Vegetable oils have several effects/benefits on skin and can be used in emulsions to release principal active components for cosmetic purposes. Herein, multiple W/O/W emulsions were formulated in a one-step emulsification method, and the resulting anisotropic structures were characterized by x-ray diffraction measurements. The multiple emulsions obtained were stable and maintained their anisotropic structures over 2 years. WAXS (wide-angle x-ray scattering) measurements of these emulsions suggested that the carbon chains of the surfactant around the globules are disposed in a gel network phase. Furthermore, SAXS (small-angle x-ray scattering) measurements indicated that the surfactant is organized in lamellar layers around the globules. Thus, for the first time, we demonstrated that stable lamellar gel phase multiple emulsions can be made from vegetable oils. In addition to having the advantage of being prepared in one step, these emulsions have desirable characteristics that can be used in the cosmetic industry as natural active principles with low surfactant concentration and the unique features of multiple emulsions with gel phases.  相似文献   

15.
The hydrothermal crystallization of CoAPO-5 molecular sieves has been studied using time-resolved in-situ SAXS/WAXS, UV-vis, Raman, and XAS. Data collected during heating to 180 degrees C allowed the observation of different steps occurring during the transformation of the amorphous gel into a crystalline material from a macroscopic and atomic perspective. Raman spectroscopy detected the initial formation of Al-O-P bonds, whereas SAXS showed that these gel particles had a broad size distribution ranging from ca. 7 to 20 nm before crystallization began. WAXS showed that this crystallization was sharp and occurred at around 160 degrees C. Analysis of the crystallization kinetics suggested a one-dimensional growth process. XAS showed that Co(2+) transformed via a two-stage process during heating involving (i) a gradual transformation of octahedral coordination into tetrahedral coordination before the appearance of Bragg peaks corresponding to AFI, suggesting progressive incorporation of Co(2+) into the poorly ordered Al-O-P network up to ca. 150 degrees C, and (ii) a rapid transformation of remaining octahedral Co(2+) at the onset of crystallization. Co(2+) was observed to retard crystallization of AFI but provided valuable information regarding the synthesis process by acting as an internal probe. A three-stage, one-dimensional crystallization mechanism is proposed: (i) an initial reaction between aluminum and phosphate units forming a primary amorphous phase, (ii) progressive condensation of linear Al-O-P chains forming a poorly ordered structure separated by template molecules up to ca. 155 degrees C, and (iii) rapid internal reorganization of the aluminophosphate network leading to crystallization of the AFI crystal structure.  相似文献   

16.
Small angle X-ray scattering (SAXS) was applied to a new lipid model arrangement, which was achieved by concentrating or diluting internal wool lipid liposome suspensions in varying water concentrations. The influence of the water content in the lamellar structure of the internal wool lipids is compared with the lamellar structure of phosphatidylcholine bilayers present in the membranes of the living cells. The high increase in the lamellar distances with the water content indicates that large amounts of water can be retained in the lipid wool membrane in contrast to the case of phosphatidylcholine liposomes. A transition temperature between 40 and 50 degrees C tends to eliminate the ordered lamellar structure when more than 60% of water is present in the bilayer structure. This could account for the increase in the permeability of the wool fibres when these are soaked in water at temperatures exceeding 40 degrees C.  相似文献   

17.
The dynamics of the amphiphilic semifluorinated F(CF2)12(CH2)12H (F12H12) alkane that undergoes two condensed phase transitions have been investigated by Brillouin light spectroscopy, shear rheometry, small- (SAXS) and wide-angle (WAXS) X-ray scattering, and thermodynamic PVT measurements. The solid (I)-solid (II) transition (Ts) is marked by a stronger temperature dependence of the sound velocity in phase II and by a 2 orders of magnitude drop of the shear modulus. Between the Ts and the melting transition (Tm), the presence of two phonons implies a coexistence of solid (II) and amorphous (liquid) regions in the submicrometer range at thermal equilibrium as revealed by the SAXS pattern of a single reflection superimposed on a very broad amorphous halo. This intriguing finding of a transient, very slow (over 10 h) solid/liquid coexistence within phase II is rationalized by a two-stage mechanism for melting of the smectic phase (II) of F12H12. A refinement of the known packing motifs for the two solid-state structures is proposed.  相似文献   

18.
The binary system of hexaethylene glycol n-hexadecyl ether (C16EO6) and water (2H2O) has a complex, temperature-dependent lyotropic phase sequence, in the concentration region of 48-62 wt %. On cooling it shows the sequence lamellar phase, L(alpha), random mesh phase Mh1(0), rhombohedral mesh phase, Mh1(R(-)3m), bicontinuous cubic phase, V1(Ia(-)3d), and a two-phase hexagonal region, H1+Lbeta. On heating from the latter two-phase region the phase sequence is V1(Ia(-)3d), ,Mh1(0), and Lalpha. Polarizing optical microscopy, 2H nuclear magnetic resonance, and small-angle X-ray scattering have been used to study the stability of these phases, their sequence, and their physical parameters with the addition of the oils, 1-hexene, decane, and octadecane. The oils are located within the alkyl chain regions of the mesophase structures. Depending on whether the added oil is "penetrating" or "swelling", it may reside in the region between the C16 alkyl chains of the surfactant or at the center of the bilayer and affect phase stability. Oils affect both the volume of the alkyl chain region (at fixed surfactant water mole ratio) and the rigidity of the interfacial region. Both effects can influence the phase structures and their ranges of stability. Adding different types of oil to the mesh phases gives an opportunity to understand the factors that are important in their formation. The transition from the Mh1(R(-)3m) phase to Mh1(0) phase is triggered by the hydrocarbon region swelling to a critical volume fraction of 0.32, a surfactant rod radius of approximately 1.75 nm, and a critical water layer thickness of approximately 2.5 nm. The latter is most likely responsible for a weakening of the interlayer headgroup overlap interaction and the loss of correlation between the layers. The lamellar phase becomes the only stable phase at high oil content.  相似文献   

19.
The glass transition and melting behavior of poly(ether-ester) multiblock copolymers with poly(tetramethylene isophthalate) (PTMI) hard segments and poly(tetramethylene oxide) (PTMO) soft segments are studied by differential scanning calorimetry (DSC) and small- and wide-angle x-ray scattering (SAXS and WAXS). Thermodynamic melting parameters for the PTMI homopolymer are estimated by WAXS and from the dependence of melting point on crystallization temperature. The melting behavior of PTMI is characterized by dual endotherms which are qualitatively representative of the original morphology, although reorganization effects are present. The composition dependence of the glass transition temperature parameters after rapid quenching from the melt are well described by mixed phase correlations for copolymers in the range 30-100 wt% hard segment. Combined with SAXS characterization at melt temperatures, a single phase melt is suggested in these materials which extends to temperatures below the hard segment melting point. © 1994 John Wiley & Sons, Inc.  相似文献   

20.
The solubilization of triglycerides [1,2,3-tributanoylglycerol (TBG) and 1,2,3-trihexanoylglycerol (THG)] in water/octa(oxyethylene) dodecyl ether (C(12)EO(8)) systems has been investigated. Oil-induced changes in the structure of liquid crystals in water/C(12)EO(8) system have been studied by optical observation and small-angle X-ray scattering (SAXS) measurements. In the water/C(12)EO(8)/oil systems, solubilization of THG and TBG induces a transition between H(1) (hexagonal) and L(alpha) (lamellar) liquid crystals at high C(12)EO(8) concentrations, whereas at low surfactant concentrations a H(1)-I(1) (discontinuous micellar cubic phase) transition occurs. This anomalous behavior is attributed to the partitioning of solubilized oil in the micelles. At low surfactant concentrations THG is mainly solubilized into the hydrophobic cores of the surfactant micelles, indicating high swelling or low penetration tendency, resulting in a steep increase in the radius of the aggregates (r(H)), thereby inducing a rod-sphere transition. At high surfactant concentrations, THG is not mainly solubilized into the core but distributed between the palisade layer and the core of the aggregates. The TBG is considerably solubilized into the surfactant palisade layer, indicating a high penetration tendency, resulting in an increase in the effective cross-sectional area per surfactant molecule, a(s). The thermal stability of the I(1) phase increases with the solubilization of THG into the aggregate cores. The percentage deviation of the experimental interlayer spacings (P(d)) from complete swelling was also evaluated for different triglycerides in the H(1) and L(alpha) phases or different surfactant concentrations. It is found that the penetration tendency of triglycerides could be used as a tuning parameter for I(1) phase formation depending on the surfactant concentration and the molecular weight of the oil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号