首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The excess 1/f noise in a random lattice with bond resistances r∼exp(−λx), where x is a random variable and λ≪1, is studied theoretically. It is shown that if the correlation function {δr 2}∼r r θ+2, then the relative spectral density of the noise in the system is expressed as C e∼λm exp(−λ(1−p c)), where p c is the percolation threshold and md (ν is the critical exponent of the correlation length and d is the dimensionality of the problem). It is hypothesized that the exponent m possesses a dual universality: It is independent of 1) the geometry of the lattice and 2) the θ-mechanism responsible for the generation of the local noise. Numerical modeling in a three-dimensional lattice gives m=52.3 for θ=1 and θ=0, in agreement with the hypothesis. Pis’ma Zh. éksp. Teor. Fiz. 63, No. 8, 614–618 (25 April 1996)  相似文献   

2.
We eliminate by KAM methods the time dependence in a class of linear differential equations in ℓ2 subject to an unbounded, quasi-periodic forcing. This entails the pure-point nature of the Floquet spectrum of the operator H 0Pt) for ε small. Here H 0 is the one-dimensional Schr?dinger operator p 2+V, V(x)∼|x|α, α <2 for |x|→∞, the time quasi-periodic perturbation P may grow as |x|β, β <(α−2)/2, and the frequency vector ω is non resonant. The proof extends to infinite dimensional spaces the result valid for quasiperiodically forced linear differential equations and is based on Kuksin's estimate of solutions of homological equations with non-constant coefficients. Received: 3 October 2000 / Accepted: 20 December 2000  相似文献   

3.
We consider quantum Hamiltonians of the form H(t)=H+V(t) where the spectrum of H is semibounded and discrete, and the eigenvalues behave as E n n α , with 0<α<1. In particular, the gaps between successive eigenvalues decay as n α−1. V(t) is supposed to be periodic, bounded, continuously differentiable in the strong sense and such that the matrix entries with respect to the spectral decomposition of H obey the estimate ‖V(t) m,n ‖≤ε|mn|p max {m,n}−2γ for mn, where ε>0, p≥1 and γ=(1−α)/2. We show that the energy diffusion exponent can be arbitrarily small provided p is sufficiently large and ε is small enough. More precisely, for any initial condition Ψ∈Dom(H 1/2), the diffusion of energy is bounded from above as 〈H Ψ (t)=O(t σ ), where . As an application we consider the Hamiltonian H(t)=|p| α +ε v(θ,t) on L 2(S 1,dθ) which was discussed earlier in the literature by Howland.  相似文献   

4.
Many structures in nature are invariant under the transformation pair, (p,r)→(br,−p/b), where b is some scale factor. Born’s reciprocity hypothesis affirms that this invariance extends to the entire Hamiltonian and equations of motion. We investigate this idea for atomic physics and galactic motion, where one is basically dealing with a 1/r potential and the observations are very accurate, so as to determine the scale bmΩ. We find that an Ω∼1.5×10−15 s−1 has essentially no effect on atomic physics but might possibly offer an explanation for galactic rotation, without invoking dark matter.  相似文献   

5.
A new type of correlated wave function for the normal helium is proposed in the form:ψ(r1, r2)=Σc mφm withφ m=exp]−α(r 1+r 2)]/(br 12+a) m wherea, b, α are non-linear variational parameters. Optimizing these parameters by the Monte-Carlo technique, an energy eigen-value of −2.903645(a.u.) is obtained withonly three terms in the basis expansion alongwith satisfactory cusp condition, compared to the essentially exact non-relativistic value of −2.903724 as given by Freundet al (Phys. Rev. A29, 980 (1984)).  相似文献   

6.
The thermo-optic coefficients, dn/dT, were determined for pure and Yb(20 at.%)-doped monoclinic KY(WO4)2 crystals for light polarized along the optical indicatrix axes (N p,N m and N g) in the wavelength range of 0.36–1.06 μm by a laser beam deviation method. The absolute values of thermo-optic coefficients satisfy the relation |dn p/dT|>|dn g/dT|>|dn m/dT| and increase with the wavelength increasing. In the long-wavelength range, all the dn/dT values are negative: dn p/dT=−14.6, dn m/dT=−8.9, dn g/dT=−12.4 [10−6 K−1] for pure KY(WO4)2 at 1.06 μm. The dependency of thermo-optic coefficients on the wavelength was modeled using an approach that takes into account contribution of volumetric thermal expansion and change of electronic bandgap with temperature. Large volumetric expansion of KY(WO4)2 plays a key role in the observed negative dn/dT values. Electronic bandgap and its temperature coefficient were determined for KY(WO4)2 crystals from thermo-optic dispersion curves as E g=4.8–5.0 eV and −dE g/dT=0.7–1.1×10−4 eV/K. Athermal propagation directions were calculated for KY(WO4)2 crystals at the wavelength of 1.06 μm for light polarizations EN m and N p.  相似文献   

7.
We study the two-dimensional Gross-Pitaevskii theory of a rotating Bose gas in a disc-shaped trap with Dirichlet boundary conditions, generalizing and extending previous results that were obtained under Neumann boundary conditions. The focus is on the energy asymptotics, vorticity and qualitative properties of the minimizers in the parameter range |log ε|≪Ωε −2|log ε|−1 where Ω is the rotational velocity and the coupling parameter is written as ε −2 with ε≪1. Three critical speeds can be identified. At \varOmega = \varOmegac1 ~ |loge|\varOmega=\varOmega_{\mathrm{c_{1}}}\sim |\log\varepsilon| vortices start to appear and for |loge| << \varOmega < \varOmegac2 ~ e-1|\log\varepsilon|\ll\varOmega< \varOmega_{\mathrm{c_{2}}}\sim \varepsilon^{-1} the vorticity is uniformly distributed over the disc. For \varOmega 3 \varOmega c2\varOmega\geq\varOmega _{\mathrm{c_{2}}} the centrifugal forces create a hole around the center with strongly depleted density. For Ωε −2|log ε|−1 vorticity is still uniformly distributed in an annulus containing the bulk of the density, but at \varOmega = \varOmegac3 ~ e-2|loge|-1\varOmega=\varOmega_{\mathrm {c_{3}}}\sim\varepsilon ^{-2}|\log\varepsilon |^{-1} there is a transition to a giant vortex state where the vorticity disappears from the bulk. The energy is then well approximated by a trial function that is an eigenfunction of angular momentum but one of our results is that the true minimizers break rotational symmetry in the whole parameter range, including the giant vortex phase.  相似文献   

8.
We consider a Kondo impurity coupled to a fermionic host with a power-law density of states near the Fermi level, ρ(ε) ∼ |ε|r, with exponent r < 0. Using both perturbative renormalization group (poor man's scaling) and numerical renormalization group methods, we analyze the phase diagram of this model for ferromagnetic and antiferromagnetic Kondo coupling. Both sectors display non-trivial behavior with several stable phases separated by continuous transitions. In particular, on the ferromagnetic side there is a stable intermediate-coupling fixed point with universal properties corresponding to a fractional ground-state spin. Received 18 February 2002 Published online 31 July 2002  相似文献   

9.
The dipion spectrum for the ϒ(nS) → ϒ(n′S) transition with n < 4 has the form dw/dq ∼ (phase space) |η − x|2, with x = q 2 − 4m π2 / (ΔM)2 − 4m π2 < q 2M ππ2, and ΔM = M(nS) − M(n′S). The parameter η is calculated and the spectrum is shown to reproduce the experimental data for all three types of decays: 3 → 1, 2 → 1, and 3 → 2 with η ≈ 0.5, 0, and −3, respectively. The text was submitted by the author in English.  相似文献   

10.
We study the Gross-Pitaevskii (GP) energy functional for a fast rotating Bose-Einstein condensate on the unit disc in two dimensions. Writing the coupling parameter as 1/ε 2 we consider the asymptotic regime ε → 0 with the angular velocity Ω proportional to (ε 2|log ε|)−1. We prove that if Ω = Ω0(ε 2|log ε|)−1 and Ω0 > 2(3π)−1 then a minimizer of the GP energy functional has no zeros in an annulus at the boundary of the disc that contains the bulk of the mass. The vorticity resides in a complementary ‘hole’ around the center where the density is vanishingly small. Moreover, we prove a lower bound to the ground state energy that matches, up to small errors, the upper bound obtained from an optimal giant vortex trial function, and also that the winding number of a GP minimizer around the disc is in accord with the phase of this trial function.  相似文献   

11.
A microscopic theory of the Efetov supermatrix sigma-model type is constructed for the low-lying electron states in a mixed superconductive-normal system with disorder. This technique is used for the study of the localized states in the core of a vortex in a moderately clean superconductor with τ −1ω 0∼Δ2/E F . At low energies εω Th∼ (ω 0/τ)1/2, the energy level statistics is described by the “zero-dimensional” limit of this supermatrix theory, and the result for the density of states is equivalent to that obtained within Altland-Zirnbauer random matrix model. Nonzero modes of the sigma model increase the mean interlevel distance by the relative amount [2 ln (1/ω 0 τ)]−1. Pis’ma Zh. éksp. Teor. Fiz. 68, No. 1, 78–83 (10 July 1998) Published in English in the original Russian journal. Edited by Steve Torstveit.  相似文献   

12.
A mathematical method is presented for solving the Schr?dinger equation for a system of identical body forces. The N-body forces are more easily introduced and treated within the hyperspherical harmonics. The problem of the N-body potential has been used at the level of both classical and quantum mechanics. The hypercentral interacting potential is assumed to depend on the hyperradius x = (ξ12 + ξ22 + ⋯ + ξN−12)1/2 only, where ξ12,…,ξN−1 are Jacobi relative coordinates which are functions of N-particle relative positions r12,r23,…,rN1. The problem of the harmonic oscillator and the Coulomb-type potential has been widely studied in different contexts. Using the N-body potential V(x) = ax2 + bx − (c/x) as an example, and assuming an ansatz for the eigenfunction, an exact analytical solution of the Schr?dinger equation for an N-body system in three dimensions is obtained. This method is also applicable to some other types of potentials for N-identical interacting particles.  相似文献   

13.
The static conductivity σ(E) and photoconductivity (PC) at radiation frequencies ħω=10 and 15 meV in Si doped with shallow impurities (density N=1016−6×1016 cm−3, ionization energy ε1≃45 meV) with compensation K=10−4−10−5 in electric fields E=10–250 V/cm are measured at liquid-helium temperatures T. Special measures are taken to prevent the high-frequency part of the background radiation (ħω>16 meV) from striking the sample. It is found that the conductivity σ(E) is due to carrier motion along the D band, which is filled with carriers under the influence of the field E. In fields E<E q (E q ≃100–200 V/cm) the carrier motion consists of hops along localized D states in a 10–15 meV energy band below the bottom of the free band (energy ε=ε1); for E>E q carriers drift along localized D states with energy ε∞ε1−10 meV. An explanation is proposed for the threshold behavior of the field dependence of the photo-and static conductivities. Pis’ma Zh. éksp. Teor. Fiz. 66, No. 4, 232–236 (25 August 1997)  相似文献   

14.
Asymptotically accurate results have been obtained for the average Green’s function and the density of states in a Gaussian random potential for dimensionality of space d=4−ε over the entire energy region, including the vicinity of the mobility threshold. For N∼1 (N is the order of the perturbation theory) only parquet terms corresponding to higher terms in 1/ε are taken into account. For large N all powers of 1/ε are taken into account with their coefficients calculated in the main asymptotic limit in N. This calculation is performed by combining the condition of renormalization theory with the Lipatov asymptotic limit. Zh. éksp. Teor. Fiz. 111, 1896–1914 (May 1997)  相似文献   

15.
We report the first observation of “quasi-Planck” spectra of capillary turbulence on the surface of liquid hydrogen in the dissipation domain. Capillary waves have been driven by low-frequency random force. We have observed that the frequency spectrum of surface elevation changes its dependence from power-like 〈|ηω2|〉 ∼ ω−2,8 at middle-frequency domain to “quasi-Planck” distribution ∼e ω/ω d at higher frequencies. The frequency ω d is proportional to the boundary frequency between inertial interval and dissipation domain and it is scaled up with the increase of driving force.  相似文献   

16.
A quantum Monte Carlo procedure is used to calculate the energy, sublattice magnetization, Néel temperature, and the slopes of the S=[1/T N(x=0)]dT N(x)/dx curves as functions of the hole concentration and the exchange anisotropy Δ=1−J x,y/J z in the Heisenberg model with anisotropic negative interactions between nearest neighbors in a square lattice with dilution among the lattice sites. The slope diverges in the limit Δ→0: S∼ln(6.5/Δ). Fiz. Tverd. Tela (St. Petersburg) 39, 898–900 (May 1997)  相似文献   

17.
Optical gas-dynamic processes occurring in polymeric targets ((CH2O) n , (C2F4) n ) exposed to ultrashort laser pulses (τ 0.5 ∼ 45 − 70 fs; λ I,II,III = 266, 400, 800 nm; and E/S ∼ 0.1 − 40 J/cm2 at r 0 ∼ 20 μm) were studied under normal conditions and in vacuum (p ∼ 10−2 Pa). The dynamics of the mass flow from the target surface (m′ ∼ 10−5 − 10−4 g/J) was studied and the spectral-energy thresholds of laser ablation, the electron density distribution (n e ∼ 1014 − 1018 cm−3), the mass-averaged velocity of the material flow from the target surface (∼ 103 m/s), and the chemical composition and average temperature in the near-surface plasma formation (T ∼ 5000 K) were determined using interference microscopy, emission spectroscopy, and shadowgraphy.  相似文献   

18.
Measurements have been made of the Hall coefficientR of some alloys of silver in palladium over the temperature range 1°K to 120°K. The alloys contain between ∼1 and ∼10 at.-% silver. Values ofR were also obtained at room temperature and these were in good agreement with earlier published work. The values ofR are negative in all the alloys, and |R| increases both on reducing the temperature and increasing the silver concentration,c. Below ∼10°K, |R| becomes independent of temperature but shows a linear dependence onc, increasing by a factor of 2.5 over the concentration range measured. This increase is too great to be accounted for in terms of band structure changes alone, so we have examined the effects of anisotropic impurity scattering. To a first approximation it can be shown thatR is proportional to an anisotropy parameterA, defined asA=〈τ 2(k)〉/〈τ(k)〉2, whereτ(k) represents the relaxation time of an electron in a statek, and 〈〉 is an average over the Fermi surface. In palladium we assume that the majority of the current is carried by the s-electrons. In the presence of silver impurities these electrons can be scattered into s-states or d-states with relaxation times given byτ ss α1/c(1−c) andτ sd α1/c 2(1−c) respectively. FollowingPlate we have assumed thatτ ss is isotropic and thatτ sd is anisotropic, leading to an overall anisotropic relaxation time for impurity scattering. We then find the parameterA increases approximately linearly with silver content, in accordance with our experimental results.  相似文献   

19.
M R M Witwit 《Pramana》1994,42(2):159-165
Eigenenergies are calculated for the potentialsV 1(r)=−(a/r)[1+(1+br)e−2br ] andV 2(r)=−(v/r)[1 −λr(1−Z −1)(1+λr)−1], using renormalized series technique. Accurate results produced here for various eigenstates agree with those available in the literature.  相似文献   

20.
The electromagnetic wave absorption properties of resin compacts containing 40 vol. % composite powders of α-Fe/C(a), and Fe3C/C(a) were characterized in a frequency range of 0.05–26.5 GHz, according to a conventional reflection/transmission technique. The real part (εr ) and the imaginary part (εr ′′) of relative permittivity were constantly low in the 2–14 GHz (εr = ∼12.4 and εr ′′= ∼0.6) for α-Fe/C(a) resin composites, and in the 1–26.5 GHz (εr = ∼9.6 and εr ′′= ∼0.8) for Fe3C/C(a) ones. The imaginary part (μr ′′) of relative permeability exhibited wide peaks in the 1–9 GHz range for α-Fe/C(a), and in the 2–26.5 GHz range for Fe3C/C(a) owing to their different magnetocrystalline anisotropy field values. Consequently, the resin compacts with 40 vol. % α-Fe/C(a), and Fe3C/C(a) powders provided good electromagnetic wave absorption performances (reflection loss <-20 dB) in ranges of 4.3–8.2 GHz, and 9–26.5 GHz over absorber thicknesses of 1.8–3.3 mm, and 1.0–2.4 mm, respectively. PACS 76.50.+g; 61.46.+w; 75.50.Bb; 75.30.Gw; 75.20.En  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号