首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 478 毫秒
1.
The Multiple-Scale Method is applied directly to a one-dimensional continuous model to derive the equations governing the asymptotic dynamic of the system around a bifurcation point. The theory is illustrated with reference to a specific example, namely an internally constrained planar beam, equipped with a lumped viscoelastic device and loaded by a follower force. Nonlinear, integro-differential equations of motion are derived and expanded up to cubic terms in the transversal displacements and velocities of the beam. They are put in an operator form incorporating the mechanical boundary conditions, which account for the lumped viscoelastic device; the problem is thus governed by mixed algebraic-integro-differential operators. The linear stability of the trivial equilibrium is first studied. It reveals the existence of divergence, Hopf and double-zero bifurcations. The spectral properties of the linear operator and its adjoint are studied at the bifurcation points by obtaining closed-form expressions. Notably, the system is defective at the double-zero point, thus entailing the need to find a generalized eigenvector. A multiple-scale analysis is then performed for the three bifurcations and the relevant bifurcation equations are derived directly in their normal forms. Preliminary numerical results are illustrated for the double-zero bifurcation.  相似文献   

2.
The post-critical behavior of a cantilever beam with rectangular cross-section, under simultaneous action of conservative and non-conservative loads, is analyzed. An internally constrained Cosserat rod model is adopted to describe the dynamics of the beam in finite displacement regime. The bifurcation equations for simple buckling (divergence), simple flutter (Hopf) and double-zero (Takens-Bogdanova-Arnold) bifurcations are derived by means of the multiple time scales method. Due to the nilpotent eigenvalue at the double-zero critical point, the evaluation of the generalized Keldysh's eigenfunctions is required. Finally, some numerical results are shown and the bifurcation scenario of the beam is discussed.  相似文献   

3.
This paper presents the effect of preload, as one of the design parameters, on nonlinear dynamic behavior of a rigid rotor supported by gas-lubricated noncircular journal bearings. A finite element method has been employed to solve the Reynolds equation in static and dynamical states and the dynamical equations are solved using the Runge–Kutta method. To analyze the behavior of the rotor center in horizontal and vertical directions under different operating conditions, dynamic trajectory, power spectra, Poincare maps, and bifurcation diagrams are used. Results of this study reveal how the complex dynamic behavior of two types of noncircular bearing systems comprising periodic, KT-periodic, and quasi-periodic responses of the rotor center varies with changes in preload value.  相似文献   

4.
In this paper we analyze the steady-state bifurcations from the trivial solution of the reaction-diffusion equations associated to a model chemical reaction, the so-called Brusselator. The present analysis concentrates on the case when the first bifurcation is from a double eigenvalue. The dependence of the bifurcation diagrams on various parameters and perturbations is analyzed. The results of reference [2] are invoked to show that further complications in the model would not lead to new behavior.  相似文献   

5.
Approximate equations are derived for nonlinear torsional waves propagating along a thin circular viscoelastic rod. Ignoring the thermal effect, ‘nearly elastic’ compressible viscoelastic solids are considered in which a weak dependence of stresses on a history of strain is assumed. With the assumption that the rod is subjected to a finite angle of torsion, but that the rod is thin, the displacement is sought in a power series of the radial coordinate. The effects of geometrical and material nonlinearity give rise to the normal stress effect, which introduces deformations in the cross sectional and longitudinal dimensions of rod. Taking account of both the effect of nonlinearity and that of viscoelasticity, one dimensional approximate equations are obtained for the angle of torsion coupled with the longitudinal deformation.  相似文献   

6.
Due to the increasing use of passive absorbers to control unwanted vibrations,many studies have been done on energy absorbers ideally, but the lack of studies of real environmental conditions on these absorbers is felt. The present work investigates the effect of viscoelasticity on the stability and bifurcations of a system attached to a nonlinear energy sink(NES). In this paper, the Burgers model is assumed for the viscoelasticity in an NES, and a linear oscillator system is considered for inve...  相似文献   

7.
In this paper, a Fourier expansion-based differential quadrature (FDQ) method is developed to analyze numerically the transverse nonlinear vibrations of an axially accelerating viscoelastic beam. The partial differential nonlinear governing equation is discretized in space region and in time domain using FDQ and Runge–Kutta–Fehlberg methods, respectively. The accuracy of the proposed method is represented by two numerical examples. The nonlinear dynamical behaviors, such as the bifurcations and chaotic motions of the axially accelerating viscoelastic beam, are investigated using the bifurcation diagrams, Lyapunov exponents, Poincare maps, and three-dimensional phase portraits. The bifurcation diagrams for the in-plane responses to the mean axial velocity, the amplitude of velocity fluctuation, and the frequency of velocity fluctuation are, respectively, presented when other parameters are fixed. The Lyapunov exponents are calculated to further identify the existence of the periodic and chaotic motions in the transverse nonlinear vibrations of the axially accelerating viscoelastic beam. The conclusion is drawn from numerical simulation results that the FDQ method is a simple and efficient method for the analysis of the nonlinear dynamics of the axially accelerating viscoelastic beam.  相似文献   

8.
The critical and post-critical behavior of a non-conservative non-linear structure, undergoing statical and dynamical bifurcations, is analyzed. The system consists of a purely flexible planar beam, equipped with a lumped visco-elastic device, loaded by a follower force. A unique integro-differential equation of motion in the transversal displacement, with relevant boundary conditions, is derived. Then, the linear stability diagram of the trivial rectilinear configuration is built-up in the parameter space. Particular emphasis is given to the role of the damping on the critical scenario. The occurrence of different mechanisms of instability is highlighted, namely, of divergence, Hopf, double zero, resonant and non-resonant double Hopf, and divergence-Hopf bifurcation. Attention is then focused on the two latter (codimension-two) bifurcations. A multiple scale analysis is carried-out directly on the continuous model, and the relevant non-linear bifurcation equations in the amplitudes of the two interactive modes are derived. The fixed-points of these equations are numerically evaluated as functions of two bifurcation parameters and some equilibrium paths illustrated. Finally, the bifurcation diagrams, illustrating the system behavior around the critical points of the parameter space, are obtained.  相似文献   

9.
The loss of stability of the trivial downhanging equilibrium position of a slender circular tube conveying incompressible fluid flow is studied. The tube is clamped at its upper end and free at its lower end. Inbetween the three-dimensional transversal motion is constrained by an elastic support which is considered to beD 4-symmetric, that is, has the symmetry of the square (Figure 1). Kirchhoff's rod theory and the Kelvin-Voigt viscoelastic law are used to derive the tube equations under the assumption of large displacement but small strain.The stability analysis is performed making use of the methods of equivariant bifurcation theory, that is, making use of the symmetry properties of the original system in deriving the amplitude equations of the critical modes. All cases of loss of stability which are possible for generic one-parameter bifurcations and the coincident case of a zero root and a purely imaginary pair of roots are investigated.Dedicated to Professor P. R. Sethna on the Occasion of His 70th Birthday  相似文献   

10.
The Hopf and double Hopf bifurcations analysis of asymmetrical rotating shafts with stretching nonlinearity are investigated. The shaft is simply supported and is composed of viscoelastic material. The rotary inertia and gyroscopic effect are considered, but, shear deformation is neglected. To consider the viscoelastic behavior of the shaft, the Kelvin–Voigt model is used. Hopf bifurcations occur due to instability caused by internal damping. To analyze the dynamics of the system in the vicinity of Hopf bifurcations, the center manifold theory is utilized. The standard normal forms of Hopf bifurcations for symmetrical and asymmetrical shafts are obtained. It is shown that the symmetrical shafts have double zero eigenvalues in the absence of external damping, but asymmetrical shafts do not have. The asymmetrical shaft in the absence of external damping has a saddle point, therefore the system is unstable. Also, for symmetrical and asymmetrical shafts, in the presence of external damping at the critical speeds, supercritical Hopf bifurcations occur. The amplitude of periodic solution due to supercritical Hopf bifurcations for symmetrical and asymmetrical shafts for the higher modes would be different, due to shaft asymmetry. Consequently, the effect of shaft asymmetry in the higher modes is considerable. Also, the amplitude of periodic solutions for symmetrical shafts with rotary inertia effect is higher than those of without one. In addition, the dynamic behavior of the system in the vicinity of double Hopf bifurcation is investigated. It is seen that in this case depending on the damping and rotational speed, the sink, source, or saddle equilibrium points occur in the system.  相似文献   

11.
The bifurcation and chaos of a cable–beam coupled system under simultaneous internal and external resonances are investigated. The combined effects of the nonlinear term due to the cable’s geometric and coupled behavior between the modes of the beam and the cable are considered. The nonlinear partial-differential equations are derived by the Hamiltonian principle. The Galerkin method is applied to truncate the governing equation into a set of ordinary differential equations. The bifurcation diagrams in three separate loading cases, namely, excitation acting on the cable, on the beam and simultaneously on the beam and cable, are analyzed with changing forcing amplitude. Based on careful numerical simulations, bifurcations and possible chaotic motions are represented to reveal the combined effects of nonlinearities on the dynamics of the beam and the cable when they act as an overall structure.  相似文献   

12.
This paper investigates the steady-state periodic response and the chaos and bifurcation of an axially accelerating viscoelastic Timoshenko beam. For the first time, the nonlinear dynamic behaviors in the transverse parametric vibration of an axially moving Timoshenko beam are studied. The axial speed of the system is assumed as a harmonic variation over a constant mean speed. The transverse motion of the beam is governed by nonlinear integro-partial-differential equations, including the finite axial support rigidity and the longitudinally varying tension due to the axial acceleration. The Galerkin truncation is applied to discretize the governing equations into a set of nonlinear ordinary differential equations. Based on the solutions obtained by the fourth-order Runge–Kutta algorithm, the stable steady-state periodic response is examined. Besides, the bifurcation diagrams of different bifurcation parameters are presented in the subcritical and supercritical regime. Furthermore, the nonlinear dynamical behaviors are identified in the forms of time histories, phase portraits, Poincaré maps, amplitude spectra, and sensitivity to initial conditions. Moreover, numerical examples reveal the effects of various terms Galerkin truncation on the amplitude–frequency responses, as well as bifurcation diagrams.  相似文献   

13.
This paper concerns dynamics and bifurcations properties of a class of continuous-defined one-dimensional maps, in a three-dimensional parameter space: Blumberg’s functions. This family of functions naturally incorporates a major focus of ecological research: the Allee effect. We provide a necessary condition for the occurrence of this phenomenon, associated with the stability of a fixed point. A central point of our investigation is the study of bifurcations structure for this class of functions. We verified that under some sufficient conditions, Blumberg’s functions have a particular bifurcations structure: the big bang bifurcations of the so-called “box-within-a-box” type, but for different kinds of boxes. Moreover, it is verified that these bifurcation cascades converge to different big bang bifurcation curves, where for the corresponding parameter values are associated distinct attractors. This work contributes to clarify the big bang bifurcation analysis for continuous maps. To support our results, we present fold and flip bifurcations curves and surfaces, and numerical simulations of several bifurcation diagrams.  相似文献   

14.
Unlike classical bifurcations, border-collision bifurcations occur when, for example, a fixed point of a continuous, piecewise C 1 map crosses a boundary in state space. Although classical bifurcations have been much studied, border-collision bifurcations are not well understood. This paper considers a particular class of border-collision bifurcations, i.e., border-collision period-doubling bifurcations. We apply a subharmonic perturbation to the bifurcation parameter, which is also known as alternate pacing, and we investigate the response under such pacing near the original bifurcation point. The resulting behavior is characterized quantitatively by a gain, which is the ratio of the response amplitude to the applied perturbation amplitude. The gain in a border-collision period-doubling bifurcation has a qualitatively different dependence on parameters from that of a classical period-doubling bifurcation. Perhaps surprisingly, the differences are more readily apparent if the gain is plotted versus the perturbation amplitude (with the bifurcation parameter fixed) than if plotted versus the bifurcation parameter (with the perturbation amplitude fixed). When this observation is exploited, the gain under alternate pacing provides a useful experimental tool to identify a border-collision period-doubling bifurcation.  相似文献   

15.
The Subharmonic Bifurcation of a Viscoelastic Circular Cylindrical Shell   总被引:1,自引:0,他引:1  
Xu  Kai-Yu  Cheng  Chang-Jun 《Nonlinear dynamics》1998,17(2):159-171
In this paper the nonlinear dynamic behavior of a viscoelastic circular cylindrical shell under a harmonic excitation applied at both ends is studied. The modified Flugge partial differential equations of motion are reduced to a system of finite degrees of freedom using the Galerkin method. The equations are solved by the Liapunov–Schmidt reduction procedure. In order to study 1/2 and 1/4 subharmonic parametric resonance of the shell, the transition sets in parameter plane and bifurcation diagrams are plotted for a number of situations. Results indicate that, for certain static loads, the shell may display jumps due to the presence of dynamic periodic load with small amplitude. Additionally, different physical situations are identified in which periodic oscillating phenomena can be observed, and where 1/4 subharmonic parametric resonance is simpler than the 1/2-one.  相似文献   

16.
We develop some computer-assisted techniques for the analysis of stationary solutions of dissipative partial differential equations, of their stability, and of their bifurcation diagrams. As a case study, these methods are applied to the Kuramoto–Sivashinski equation. This equation has been investigated extensively, and its bifurcation diagram is well known from a numerical point of view. Here, we rigorously describe the full graph of solutions branching off the trivial branch, complete with all secondary bifurcations, for parameter values between 0 and 80. We also determine the dimension of the unstable manifold for the flow at some stationary solution in each branch.  相似文献   

17.
This paper presents the study of the dynamic analysis of a rigid rotor supported by a two-lobe non-circular gas-lubricated journal bearing. A finite element method has been employed to solve the Reynolds equation in static and dynamical states and the dynamical equations have been solved using Runge–Kutta method. To analyze the behavior of the rotor center in horizontal and vertical directions under the different operating conditions, the dynamic trajectory, the power spectra, the Poincare maps, and the bifurcation diagrams are used. Results of this study indicates that by considering bearing number and rotor mass as the parameters of the system, complex dynamic behavior comprising periodic, KT-periodic, and quasi-periodic responses of the rotor center has occurred.  相似文献   

18.
Various static and dynamic aspects of post-buckled thin plates, including the transition of buckled patterns, post-buckling dynamics, secondary bifurcation, and dynamic snapping (mode jumping phenomenon), are investigated systematically using asymptotical and non-stationary finite element methods. In part I, the secondary dynamic instability and the local post-secondary buckling behavior of thin rectangular plates under generalized (mechanical and thermal) loading is investigated using an asymptotic numerical method which combines Koiter’s nonlinear instability theory with the finite element technique. A dynamic multi-mode reduction method—similar to its static single-mode counterpart: Liapunov–Schmidt reduction—is developed in this perturbation approach. Post-secondary buckling equilibrium branches are obtained by solving the reduced low-dimensional parametric equations and their stability properties are determined directly by checking the eigenvalues of the resulting Jacobian matrix. Typical post-secondary buckling forms—transcritical, supercritical and subcritical bifurcations are observed according to different combinations of boundary conditions and load types. Geometric imperfection analysis shows that not only the secondary bifurcation load but also changes in the fundamental post-secondary buckling behavior are affected. The post-buckling dynamics and the global analysis of mode jumping of the plates are addressed in part II.  相似文献   

19.
Reflection characteristics of longitudinal strain waves in a semi-infinite elastic rod con-nected to a viscoelastic stratum are investigated analytically.The three-dimensional viscoelasticity the-ory is applied to the stratum,and the Laplace transform with respect to time and the numerical inverseLaplace transform by means of Laguerre function are used.The time histories for the longitudinalstrain of an arbitrary point of the rod are presented.Two typical viscoelastic models are considered,one is the usual Maxwell-Voigt model,the other is whose relaxation function is given by a power law.The numerical results for the two models are presented and compared each other and also with previ-ously published results for the elastic stratum.  相似文献   

20.
Wang  Yue-Yue  Dai  Chao-Qing  Xu  Yi-Qing  Zheng  Jun  Fan  Yan 《Nonlinear dynamics》2018,93(3):1261-1275
Modern methods of nonlinear dynamics including time histories, phase portraits, power spectra, and Poincaré sections are used to characterize the stability and bifurcation regions of a cantilevered pipe conveying fluid with symmetric constraints at the point of contact. In this study, efforts are made to demonstrate the importance of characterizing the system at the arbitrarily positioned symmetric constraints rather than at the tip of the cantilevered pipe. Using the full nonlinear equations of motion and the Galerkin discretization, a nonlinear analysis is performed. After validating the model with previous results using the bifurcation diagrams and achieving full agreement, the bifurcation diagram at the point of contact is further investigated to select key flow velocities of interest. In addition to demonstrating the progression of the selected regions using primarily phase portraits, a detailed comparison is made between the tip and the point of contact at the key flow velocities. In doing so, period doubling, pitchfork bifurcations, grazing bifurcations, sticking, and chaos that occur at the point of contact are found to not always occur at the tip for the same flow speed. Thus, it is shown that in the case of cantilevered pipes with constraints, more accurate characterization of the system is obtained in a specified range of flow velocities by characterizing the system at the point of contact rather than at the tip.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号