首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
In recent years, the identification of the essential nodes in complex networks has attracted significant attention because of their theoretical and practical significance in many applications, such as preventing and controlling epidemic diseases and discovering essential proteins. Several importance measures have been proposed from diverse perspectives to identify crucial nodes more accurately. In this paper, we propose a novel importance metric called node propagation entropy, which uses a combination of the clustering coefficients of nodes and the influence of the first- and second-order neighbor numbers on node importance to identify essential nodes from an entropy perspective while considering the local and global information of the network. Furthermore, the susceptible–infected–removed and susceptible–infected–removed–susceptible epidemic models along with the Kendall coefficient are used to reveal the relevant correlations among the various importance measures. The results of experiments conducted on several real networks from different domains show that the proposed metric is more accurate and stable in identifying significant nodes than many existing techniques, including degree centrality, betweenness centrality, closeness centrality, eigenvector centrality, and H-index.  相似文献   

2.
Computing influential nodes gets a lot of attention from many researchers for information spreading in complex networks. It has vast applications, such as viral marketing, social leader creation, rumor control, and opinion monitoring. The information-spreading ability of influential nodes is greater compared with other nodes in the network. Several researchers proposed centrality measures to compute the influential nodes in a complex network, such as degree, betweenness, closeness, semi-local centralities, and PageRank. These centrality methods are defined based on the local and/or global information of nodes in the network. However, due to their high time complexity, centrality measures based on the global information of nodes have become unsuitable for large-scale networks. Very few centrality measures exist that are based on the attributes between nodes and the structure of the network. We propose the nearest neighborhood trust PageRank (NTPR) based on the structural attributes of neighbors and nearest neighbors of nodes. We define the measure based on the degree ratio, the similarity between nodes, the trust values of neighbors, and the nearest neighbors. We computed the influential nodes in various real-world networks using the proposed centrality method. We found the maximum influence by using influential nodes with SIR and independent cascade methods. We also compare the maximum influence of our centrality measure with the existing basic centrality measures.  相似文献   

3.
Information entropy metrics have been applied to a wide range of problems that were abstracted as complex networks. This growing body of research is scattered in multiple disciplines, which makes it difficult to identify available metrics and understand the context in which they are applicable. In this work, a narrative literature review of information entropy metrics for complex networks is conducted following the PRISMA guidelines. Existing entropy metrics are classified according to three different criteria: whether the metric provides a property of the graph or a graph component (such as the nodes), the chosen probability distribution, and the types of complex networks to which the metrics are applicable. Consequently, this work identifies the areas in need for further development aiming to guide future research efforts.  相似文献   

4.
With the rapid development of computer technology, the research on complex networks has attracted more and more attention. At present, the research directions of cloud computing, big data, internet of vehicles, and distributed systems with very high attention are all based on complex networks. Community structure detection is a very important and meaningful research hotspot in complex networks. It is a difficult task to quickly and accurately divide the community structure and run it on large-scale networks. In this paper, we put forward a new community detection approach based on internode attraction, named IACD. This algorithm starts from the perspective of the important nodes of the complex network and refers to the gravitational relationship between two objects in physics to represent the forces between nodes in the network dataset, and then perform community detection. Through experiments on a large number of real-world datasets and synthetic networks, it is shown that the IACD algorithm can quickly and accurately divide the community structure, and it is superior to some classic algorithms and recently proposed algorithms.  相似文献   

5.
康玲  项冰冰  翟素兰  鲍中奎  张海峰 《物理学报》2018,67(19):198901-198901
复杂网络多影响力节点的识别可以帮助理解网络的结构和功能,具有重要的理论意义和应用价值.本文提出一种基于网络区域密度曲线的多影响力节点的识别方法.应用两种不同的传播模型,在不同网络上与其他中心性指标进行了比较.结果表明,基于区域密度曲线的识别方法能够更好地识别网络中的多影响力节点,选中的影响力节点之间的分布较为分散,自身也比较重要.本文所提方法是基于网络的局部信息,计算的时间复杂度较低.  相似文献   

6.
In this paper, we propose a new method that enables us to detect and describe the functional modules in complex networks. Using the proposed method, we can classify the nodes of networks into different modules according to their pattern of intra- and extra-module links. We use our method to analyze the modular structures of the ER random networks. We find that different modules of networks have different structure properties, such as the clustering coefficient. Moreover, at the same time, many nodes of networks participate different modules. Remarkably, we find that in the ER random networks, when the probability p is small, different modules or different roles of nodes can be Mentified by different regions in the c-p parameter space.  相似文献   

7.
A system’s response to disturbances in an internal or external driving signal can be characterized as performing an implicit computation, where the dynamics of the system are a manifestation of its new state holding some memory about those disturbances. Identifying small disturbances in the response signal requires detailed information about the dynamics of the inputs, which can be challenging. This paper presents a new method called the Information Impulse Function (IIF) for detecting and time-localizing small disturbances in system response data. The novelty of IIF is its ability to measure relative information content without using Boltzmann’s equation by modeling signal transmission as a series of dissipative steps. Since a detailed expression of the informational structure in the signal is achieved with IIF, it is ideal for detecting disturbances in the response signal, i.e., the system dynamics. Those findings are based on numerical studies of the topological structure of the dynamics of a nonlinear system due to perturbated driving signals. The IIF is compared to both the Permutation entropy and Shannon entropy to demonstrate its entropy-like relationship with system state and its degree of sensitivity to perturbations in a driving signal.  相似文献   

8.
有用信息提取是复杂体系近红外检测的重点和难点之一。由于复杂体系光谱中存在各种噪声、基线漂移、谱带重叠及复杂背景的干扰,常规方法不能准确地从光谱中获得有用信息。为此,将小波包变换(DWPT)和信息熵理论相结合--小波包熵(EWPIE)提取复杂体系光谱中的有用信息。思路是采用小波包变换对光谱信号进行多频带分解,根据有用信号与噪声的频带分布特点,基于信息熵理论滤除干扰的频率分量,采用正交校正法(OSC)剔除与被测组分无关的信息,然后对处理后的频率分量进行重构,从而实现复杂体系有用信息的准确提取。通过对复杂体系光谱数据建立多元校正模型来验证该方法的效果。采用牛奶的近红外光谱数据,以牛奶中脂肪和蛋白质浓度为研究对象,建立了偏最小二乘法(PLS)模型。结果显示,牛奶中脂肪和蛋白质的预测均方根误差(RMSEP)分别为0.132%和0.121%,与单纯的DWPT和OSC相比,EWPIE能够有效地提取有用信息,避免了无用信息的干扰,明显提高了模型的预测精度,对复杂体系的准确检测具有一定的理论意义和实际应用价值。  相似文献   

9.
One of the main problems in graph analysis is the correct identification of relevant nodes for spreading processes. Spreaders are crucial for accelerating/hindering information diffusion, increasing product exposure, controlling diseases, rumors, and more. Correct identification of spreaders in graph analysis is a relevant task to optimally use the network structure and ensure a more efficient flow of information. Additionally, network topology has proven to play a relevant role in the spreading processes. In this sense, more of the existing methods based on local, global, or hybrid centrality measures only select relevant nodes based on their ranking values, but they do not intentionally focus on their distribution on the graph. In this paper, we propose a simple yet effective method that takes advantage of the underlying graph topology to guarantee that the selected nodes are not only relevant but also well-scattered. Our proposal also suggests how to define the number of spreaders to select. The approach is composed of two phases: first, graph partitioning; and second, identification and distribution of relevant nodes. We have tested our approach by applying the SIR spreading model over nine real complex networks. The experimental results showed more influential and scattered values for the set of relevant nodes identified by our approach than several reference algorithms, including degree, closeness, Betweenness, VoteRank, HybridRank, and IKS. The results further showed an improvement in the propagation influence value when combining our distribution strategy with classical metrics, such as degree, outperforming computationally more complex strategies. Moreover, our proposal shows a good computational complexity and can be applied to large-scale networks.  相似文献   

10.
Complex biological systems consist of large numbers of interconnected units, characterized by emergent properties such as collective computation. In spite of all the progress in the last decade, we still lack a deep understanding of how these properties arise from the coupling between the structure and dynamics. Here, we introduce the multiscale emergent functional state, which can be represented as a network where links encode the flow exchange between the nodes, calculated using diffusion processes on top of the network. We analyze the emergent functional state to study the distribution of the flow among components of 92 fungal networks, identifying their functional modules at different scales and, more importantly, demonstrating the importance of functional modules for the information content of networks, quantified in terms of network spectral entropy. Our results suggest that the topological complexity of fungal networks guarantees the existence of functional modules at different scales keeping the information entropy, and functional diversity, high.  相似文献   

11.
Causality inference is a process to infer Cause-Effect relations between variables in, typically, complex systems, and it is commonly used for root cause analysis in large-scale process industries. Transfer entropy (TE), as a non-parametric causality inference method, is an effective method to detect Cause-Effect relations in both linear and nonlinear processes. However, a major drawback of transfer entropy lies in the high computational complexity, which hinders its real application, especially in systems that have high requirements for real-time estimation. Motivated by such a problem, this study proposes an improved method for causality inference based on transfer entropy and information granulation. The calculation of transfer entropy is improved with a new framework that integrates the information granulation as a critical preceding step; moreover, a window-length determination method is proposed based on delay estimation, so as to conduct appropriate data compression using information granulation. The effectiveness of the proposed method is demonstrated by both a numerical example and an industrial case, with a two-tank simulation model. As shown by the results, the proposed method can reduce the computational complexity significantly while holding a strong capability for accurate casuality detection.  相似文献   

12.
安海岗 《计算物理》2014,31(6):742-750
选择伦敦金与Au9999下午收盘价格作为样本数据研究时间序列双变量之间的联动波动规律.依据粗粒化方法,将伦敦金与Au9999价格的联动波动状态转化为由5个{P,N,M}字符组成的字符串,每个字符串代表5天的价格联动波动模态.将模态作为节点,模态之间的转化为边,构建价格联动波动复杂网络.运用复杂网络理论对时间序列双变量联动波动模态的统计、变化规律和演化机制进行分析.结果表明:时间序列双变量联动波动模态分布具有幂律性、群簇性和周期性,其联动波动模态主要通过少数几种模态进行转换与演化.本方法不仅可以研究不同类型时间序列双变量联动波动,同时可为多变量联动波动研究提供思路.  相似文献   

13.
相空间中脑电近似熵和信息熵的计算   总被引:1,自引:0,他引:1  
游荣义  陈忠 《计算物理》2004,21(4):341-344
提出一种基于相空间重构脑电信号来计算脑电近似熵和信息熵的新方法.实验计算结果表明,癫痫患者脑电和正常人脑电的近似熵和信息熵随相空间嵌入维数的变化有明显的不同.  相似文献   

14.
夏菽兰  赵力 《应用声学》2015,23(5):1823-1826
BP网络是应用最广的一种人工神经网络,将BP神经网络应用到压力检测领域的温度等非线性补偿,具有重要的实用价值,对压力检测精度的改进效果显著。从传感器信息融合的角度看,神经网络就是一个融合系统。通过对神经网络基本理论的阐述,针对研究对象将BP神经网络原理与多传感器信息融合技术有机集合起来,提出了基于BP神经网络的二传感器信息融合模型及改进算法,建立了BP神经网络训练标准样本库,并对该网络模型进行主要技术指标的测试和仿真工作,测试结果表明构建的模型及其改进算法能很好地满足了高精度压力检测仪的指标要求。  相似文献   

15.
吴忠德  邓露 《应用声学》2016,24(6):286-288, 322
产品在研制阶段存在大量的试验数据,为有效利用验前数据,降低测试性验证试验样本量,提出一种基于验前试验信息熵的测试性验证试验方案。该方案利用信息熵来度量研制阶段多次验前试验数据对测试性验证试验所起的作用,依据平均互信息熵和信息总量相等的原则,将多次验前试验数据等效成一次成败型数据。在此基础上,通过相容性检验方法确定验前数据与试验数据的相容性水平,并以Beta分布为验前分布,利用加权混合贝叶斯理论建立混合验后分布,之后,基于贝叶斯平均风险理论求解满足双方风险要求的试验方案。最后,以某型雷达发射分机为例,对其进行测试性验证试验研究,研究结果验证了该方案的有效性。  相似文献   

16.
Assessing where and how information is stored in biological networks (such as neuronal and genetic networks) is a central task both in neuroscience and in molecular genetics, but most available tools focus on the network’s structure as opposed to its function. Here, we introduce a new information-theoretic tool—information fragmentation analysis—that, given full phenotypic data, allows us to localize information in complex networks, determine how fragmented (across multiple nodes of the network) the information is, and assess the level of encryption of that information. Using information fragmentation matrices we can also create information flow graphs that illustrate how information propagates through these networks. We illustrate the use of this tool by analyzing how artificial brains that evolved in silico solve particular tasks, and show how information fragmentation analysis provides deeper insights into how these brains process information and “think”. The measures of information fragmentation and encryption that result from our methods also quantify complexity of information processing in these networks and how this processing complexity differs between primary exposure to sensory data (early in the lifetime) and later routine processing.  相似文献   

17.
近红外光谱分析在工业过程故障检测方面具有独特的优势,是一种准确且高效的方法。结合互信息熵和传统的主成分分析,对近红外光谱特征信息进行提取,通过构建过程的模式来刻画工业过程的运行状态。利用近红外光谱数据,从有机分子含氢基团振动信息中获取工业系统的过程模式,从微观分子层面探索提高工业过程故障检测准确率的有效方法,结合贝叶斯统计学习技术,提出了基于近红外光谱数据的工业过程故障检测技术。针对近红外光谱信息量丰富,谱带较宽,特征性不强的特点,首先对工业过程不同运行状态下的近红外光谱吸光度数据进行一阶导数预处理,采用主成分分析法(principal component analysis,PCA)压缩光谱数据量,扩大不同运行状态下光谱特征信息的差异性,提取光谱的内部特征信息。然后采用互信息熵(mutual information entropy,MIE)作为光谱特征信息相关性度量函数,基于最小冗余最大相关算法进一步减少光谱特征信息间的冗余并最大化光谱特征信息与类别的相关性,弥补了PCA无监督特征波长选择的不足,提出一种基于PCA-MIE的过程模式构建方法,获得的过程模式子集更紧凑更具类别表现力。再利用贝叶斯统计学习算法,根据后验概率对构建的模式子集进行决策,判别生产过程的正常状态和故障状态。由于过程模式子集结合了PCA浓聚方差的优势和互信息熵相关性测度的特征信息选择方法,蕴含了更多的近红外光谱的本质信息与内在规律,从而更能刻画工业过程的运行状态。接着,设置测试准确率TA作为评估标准,用以评价故障检测方法的性能效果。最后利用某化工厂提供的原油脱盐脱水过程近红外光谱数据对所提方法进行验证,并与传统近红外光谱特征信息提取方法PCA和MIE方法性能进行对比分析,结果表明基于PCA-MIE的过程模式故障检测方法几乎在所有维数子集上性能都优于其他两种方法,在特征维数为18维时获得最高的准确率94. 6%,证明了方法的优越性。  相似文献   

18.
In recent years, there has been an exponential growth in sequencing projects due to accelerated technological advances, leading to a significant increase in the amount of data and resulting in new challenges for biological sequence analysis. Consequently, the use of techniques capable of analyzing large amounts of data has been explored, such as machine learning (ML) algorithms. ML algorithms are being used to analyze and classify biological sequences, despite the intrinsic difficulty in extracting and finding representative biological sequence methods suitable for them. Thereby, extracting numerical features to represent sequences makes it statistically feasible to use universal concepts from Information Theory, such as Tsallis and Shannon entropy. In this study, we propose a novel Tsallis entropy-based feature extractor to provide useful information to classify biological sequences. To assess its relevance, we prepared five case studies: (1) an analysis of the entropic index q; (2) performance testing of the best entropic indices on new datasets; (3) a comparison made with Shannon entropy and (4) generalized entropies; (5) an investigation of the Tsallis entropy in the context of dimensionality reduction. As a result, our proposal proved to be effective, being superior to Shannon entropy and robust in terms of generalization, and also potentially representative for collecting information in fewer dimensions compared with methods such as Singular Value Decomposition and Uniform Manifold Approximation and Projection.  相似文献   

19.
We analyze the correlation properties of the Erdos-Rényi random graph (RG) and the Barabási-Albert scale-free network (SF) under the attack and repair strategy with detrended fluctuation analysis (DFA). The maximum degree k representing the local property of the system, shows similar scaling behaviors for random graphs and scale-free networks. The fluctuations are quite random at short time scales but display strong anticorrelation at longer time scales under the same system size N and different repair probability pre. The average degree , revealing the statistical property of the system, exhibits completely different scaling behaviors for random graphs and scale-free networks. Random graphs display long-range power-law correlations. Scale-free networks are uncorrelated at short time scales; while anticorrelated at longer time scales and the anticorrelation becoming stronger with the increase of pre.  相似文献   

20.
We introduce the generalized rumor spreading model and investigate some properties of this model on different complex social networks. Despite pervious rumor models that both the spreader-spreader (SS) and the spreader-stifler (SR) interactions have the same rate α, we define α(1) and α(2) for SS and SR interactions, respectively. The effect of variation of α(1) and α(2) on the final density of stiflers is investigated. Furthermore, the influence of the topological structure of the network in rumor spreading is studied by analyzing the behavior of several global parameters such as reliability and efficiency. Our results show that while networks with homogeneous connectivity patterns reach a higher reliability, scale-free topologies need a less time to reach a steady state with respect the rumor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号