首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The coronavirus disease 2019 (COVID-19) pandemic has necessitated the development of antiviral agents against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The main protease (Mpro) is a promising target for COVID-19 treatment. Here, we report an irreversible SARS-CoV-2 Mpro inhibitor possessing chlorofluoroacetamide (CFA) as a warhead for the covalent modification of Mpro. Ugi multicomponent reaction using chlorofluoroacetic acid enabled the rapid synthesis of dipeptidic CFA derivatives that identified 18 as a potent inhibitor of SARS-CoV-2 Mpro. Among the four stereoisomers, (R,R)-18 exhibited a markedly higher inhibitory activity against Mpro than the other isomers. Reaction kinetics and computational docking studies suggest that the R configuration of the CFA warhead is crucial for the rapid covalent inhibition of Mpro. Our findings highlight the prominent influence of the CFA chirality on the covalent modification of proteinous cysteines and provide the basis for improving the potency and selectivity of CFA-based covalent inhibitors.

Chlorofluoroacetamide (CFA) was used as the warhead for covalent targeting of SARS-CoV-2 Mpro. The chirality at CFA showed marked influence on inhibitory activity, suggesting stereospecific activation of CFA for cysteine modification in the protein.  相似文献   

3.
The main protease (Mpro) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an attractive target for antiviral therapeutics. Recently, many high-resolution apo and inhibitor-bound structures of Mpro, a cysteine protease, have been determined, facilitating structure-based drug design. Mpro plays a central role in the viral life cycle by catalyzing the cleavage of SARS-CoV-2 polyproteins. In addition to the catalytic dyad His41–Cys145, Mpro contains multiple histidines including His163, His164, and His172. The protonation states of these histidines and the catalytic nucleophile Cys145 have been debated in previous studies of SARS-CoV Mpro, but have yet to be investigated for SARS-CoV-2. In this work we have used molecular dynamics simulations to determine the structural stability of SARS-CoV-2 Mpro as a function of the protonation assignments for these residues. We simulated both the apo and inhibitor-bound enzyme and found that the conformational stability of the binding site, bound inhibitors, and the hydrogen bond networks of Mpro are highly sensitive to these assignments. Additionally, the two inhibitors studied, the peptidomimetic N3 and an α-ketoamide, display distinct His41/His164 protonation-state-dependent stabilities. While the apo and the N3-bound systems favored Nδ (HD) and Nϵ (HE) protonation of His41 and His164, respectively, the α-ketoamide was not stably bound in this state. Our results illustrate the importance of using appropriate histidine protonation states to accurately model the structure and dynamics of SARS-CoV-2 Mpro in both the apo and inhibitor-bound states, a necessary prerequisite for drug-design efforts.

The main protease (Mpro) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an attractive target for antiviral therapeutics.  相似文献   

4.
Metabolomics profiling using liquid chromatography-mass spectrometry (LC-MS) has become an important tool in biomedical research. However, resolving enantiomers still represents a significant challenge in the metabolomics study of complex samples. Here, we introduced N,N-dimethyl-l-cysteine (dimethylcysteine, DiCys), a chiral thiol, for the o-phthalaldehyde (OPA) derivatization of enantiomeric amine metabolites. We took interest in DiCys because of its potential for multiplex isotope-tagged quantification. Here, we characterized the usefulness of DiCys in reversed-phase LC-MS analyses of chiral metabolites, compared against five commonly used chiral thiols: N-acetyl-l-cysteine (NAC); N-acetyl-d-penicillamine (NAP); isobutyryl-l-cysteine (IBLC); N-(tert-butoxycarbonyl)-l-cysteine methyl ester (NBC); and N-(tert-butylthiocarbamoyl)-l-cysteine ethyl ester (BTCC). DiCys and IBLC showed the best overall performance in terms of chiral separation, fluorescence intensity, and ionization efficiency. For chiral separation of amino acids, DiCys/OPA also outperformed Marfey’s reagents: 1-fluoro-2-4-dinitrophenyl-5-l-valine amide (FDVA) and 1-fluoro-2-4-dinitrophenyl-5-l-alanine amide (FDAA). As proof of principle, we compared DiCys and IBLC for detecting chiral metabolites in aqueous extracts of rice. By LC–MS analyses, both methods detected twenty proteinogenic l-amino acids and seven d-amino acids (Ala, Arg, Lys, Phe, Ser, Tyr, and Val), but DiCys showed better analyte separation. We conclude that DiCys/OPA is an excellent amine-derivatization method for enantiomeric metabolite detection in LC-MS analyses.  相似文献   

5.
The main protease (Mpro) of SARS-CoV-2 is central to viral maturation and is a promising drug target, but little is known about structural aspects of how it binds to its 11 natural cleavage sites. We used biophysical and crystallographic data and an array of biomolecular simulation techniques, including automated docking, molecular dynamics (MD) and interactive MD in virtual reality, QM/MM, and linear-scaling DFT, to investigate the molecular features underlying recognition of the natural Mpro substrates. We extensively analysed the subsite interactions of modelled 11-residue cleavage site peptides, crystallographic ligands, and docked COVID Moonshot-designed covalent inhibitors. Our modelling studies reveal remarkable consistency in the hydrogen bonding patterns of the natural Mpro substrates, particularly on the N-terminal side of the scissile bond. They highlight the critical role of interactions beyond the immediate active site in recognition and catalysis, in particular plasticity at the S2 site. Building on our initial Mpro-substrate models, we used predictive saturation variation scanning (PreSaVS) to design peptides with improved affinity. Non-denaturing mass spectrometry and other biophysical analyses confirm these new and effective ‘peptibitors’ inhibit Mpro competitively. Our combined results provide new insights and highlight opportunities for the development of Mpro inhibitors as anti-COVID-19 drugs.

The main protease (Mpro) of SARS-CoV-2 is central to viral maturation and is a promising drug target. In silico methods reveal structural aspects of how it binds to its 11 natural cleavage sites, the design of novel peptide inhibitors, and insights into drug design.  相似文献   

6.
N-acetyl-l-cysteine (NAC) is an antioxidant and a supplement and has been demonstrated to have protective effects for a variety of toxic effects of heavy metals. Although previous works have shown that NAC can ameliorate the severe toxic effects of cisplatin, there is a lack of understanding of the interactions between NAC and Pt(IV)-based prodrugs. In this work, the oxidation of NAC by a cisplatin prodrug (cis-[Pt(NH3)2Cl4]), by a prototype of Pt(IV) anticancer drug ormaplatin ([Pt(dach)Cl4]) and by a model compound (trans-[PtCl2(CN)4]2–) was characterized in detail. NAC was oxidized to NAC-disulfide as identified by mass spectrometric analysis. Time-resolved spectral and stopped-flow kinetic measurements were carried out over a wide pH range, demonstrating that the oxidation followed overall second-order kinetics. The observed second-order rate constants k′ versus pH profiles were established. A reaction mechanism was deduced, involving three parallel rate-determining steps; conceivable transition states were also proposed for these steps. Rate constants of the rate-determining steps, obtained from the simulations of rate equation to the k′–pH profiles, were largely correlated with the electron density on the sulfur atom in NAC. The Pt(IV) prodrugs can execute oxidative stress in the biological systems of the human body by direct oxidation of relevant molecules, similar to HOCl/OCl? and chloroamines. Instead, the oxidative stress involved in the severe toxic effects of cisplatin is produced via a different mode. NAC could be a chemoprotecting agent also for the Pt(IV) anticancer drugs if recent drug delivery technologies are used.  相似文献   

7.
Within this study, new materials were synthesized and characterized based on polysiloxane modified with different ratios of N-acetyl-l-cysteine (NAC) and crosslinked via UV-assisted thiol-ene addition, in order to obtain efficient membranes able to resist bacterial adherence and biofilm formation. These membranes were subjected to in vitro testing for microbial adherence against S. pneumoniae using standardized tests. WISTAR rats were implanted for 4 weeks with crosslinked siloxane samples without and with NAC. A set of physical characterization methods was employed to assess the chemical structure and morphological aspects of the new synthetized materials before and after contact with the microbiological medium.  相似文献   

8.
The SARS-CoV-2 virus is highly contagious to humans and has caused a pandemic of global proportions. Despite worldwide research efforts, efficient targeted therapies against the virus are still lacking. With the ready availability of the macromolecular structures of coronavirus and its known variants, the search for anti-SARS-CoV-2 therapeutics through in silico analysis has become a highly promising field of research. In this study, we investigate the inhibiting potentialities of triazole-based compounds against the SARS-CoV-2 main protease (Mpro). The SARS-CoV-2 main protease (Mpro) is known to play a prominent role in the processing of polyproteins that are translated from the viral RNA. Compounds were pre-screened from 171 candidates (collected from the DrugBank database). The results showed that four candidates (Bemcentinib, Bisoctrizole, PYIITM, and NIPFC) had high binding affinity values and had the potential to interrupt the main protease (Mpro) activities of the SARS-CoV-2 virus. The pharmacokinetic parameters of these candidates were assessed and through molecular dynamic (MD) simulation their stability, interaction, and conformation were analyzed. In summary, this study identified the most suitable compounds for targeting Mpro, and we recommend using these compounds as potential drug molecules against SARS-CoV-2 after follow up studies.  相似文献   

9.
Fourier-transform infrared spectroscopy and non-isothermal methods—chemiluminometry, differential scanning calorimetry, and differential thermogravimetry—were used to characterize potential structural changes of thiol-modified hyaluronans. Degradative conditions tested via rotational viscometry were first initiated applying oxidative Weissberger’s system in a reaction system under aerobic conditions. Several low-molecular-weight thiol compounds—cysteamine, l-cysteine, and N-acetyl-l-cysteine—were subsequently tested for their potential antioxidative effects against hyaluronan degradation. It was shown that different final values of dynamic viscosity of hyaluronan solutions were dependent on the thiol structure and its initial concentration. An idea has been put forward that together with the reduction of the hyaluronan molecular weight, which is a consequence of fragmentation, the degradation products might contain associated or even cross-linked structures. In the case of N-acetyl-l-cysteine application, the carbonaceous residue evidenced by differential thermogravimetry was increased when compared to that of intact hyaluronan.  相似文献   

10.
《Arabian Journal of Chemistry》2020,13(11):8069-8079
The Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that originated in Chinese city of Wuhan has caused around 906,092 deaths and 28,040,853 confirmed cases worldwide (https://covid19.who.int/, 11 September 2020). In a life-threatening situation, where there is no specific and licensed anti-COVID-19 vaccine or medicine available; the repurposed drug might act as a silver bullet. Currently, more than 211 vaccines, 80 antibodies, 31 antiviral drugs, 35 cell-based, 6 RNA-based and 131 other drugs are in clinical trials. It is therefore utter need of the hour to develop an effective drug that can be used for the treatment of COVID-19 before a vaccine can be developed. One of the best-characterized and attractive drug targets among coronaviruses is the main protease (3CLpro). Therefore, the current study focuses on the molecular docking analysis of TAT-peptide47–57 (GRKKRRQRRRP)-conjugated repurposed drugs (i.e., lopinavir, ritonavir, favipiravir, and hydroxychloroquine) with SARS-CoV-2 main protease (3CLpro) to discover potential efficacy of TAT-peptide (TP) - conjugated repurposing drugs against SARS-CoV-2. The molecular docking results validated that TP-conjugated ritonavir, lopinavir, favipiravir, and hydroxychloroquine have superior and significantly enhanced interactions with the target SARS-CoV-2 main protease. In-silico approach employed in this study suggests that the combination of the drug with TP is an excelling alternative to develop a novel drug for the treatment of SARS-CoV-2 infected patients. The development of TP based delivery of repurposing drugs might be an excellent approach to enhance the efficacy of the existing drugs for the treatment of COVID-19. The predictions from the results obtained provide invaluable information that can be utilized for the choice of candidate drugs for in vitro, in vivo and clinical trials. The outcome from this work prove crucial for exploring and developing novel cost-effective and biocompatible TP conjugated anti-SARS-CoV-2 therapeutic agents in immediate future.  相似文献   

11.
To design a probe with “turn-on” sensing, nitrogen and sulfur co-doped carbon quantum dots (N, S-CQDs) were prepared and screened against some metallic cations to first induce “turn-off” fluorescence. The ferric iron (Fe3+) was shown to be the most responsive and effective in the fluorescence quenching of the N, S-CQDs based on a proposed photo-induced electron transfer mechanism. In addition, the fluorescence of N, S-CQDs-Fe3+ system was well recovered using N-acetyl-l-cysteine (NAC) (turn-on) due to a redox reaction, suggesting that the N, S-CQDs-Fe3+ system acts as a highly sensitive and selective sensor for the determination of N-acetyl-l-cysteine with a low limit of detection equal to 65.0?nmol/L and wide linear ranges from 0.67 to 25.56 and 25.56 to 193.55?μmol/L. The “turn-off/on” fluorescence method was successfully employed to monitor N-acetyl-l-cysteine in pharmaceutical products and human urine samples with a recovery range from 99.2 to 101.3%. In addition, the fluorescence switch properties of the nitrogen and sulfur co-doped carbon quantum dots were also investigated by alternate additions of Fe3+ and N-acetyl-l-cysteine.  相似文献   

12.
13.
The COVID-19 pandemic outbreak prompts an urgent need for efficient therapeutics, and repurposing of known drugs has been extensively used in an attempt to get to anti-SARS-CoV-2 agents in the shortest possible time. The glycoside rutin shows manifold pharmacological activities and, despite its use being limited by its poor solubility in water, it is the active principle of many pharmaceutical preparations. We herein report our in silico and experimental investigations of rutin as a SARS-CoV-2 Mpro inhibitor and of its water solubility improvement obtained by mixing it with l-arginine. Tests of the rutin/l-arginine mixture in a cellular model of SARS-CoV-2 infection highlighted that the mixture still suffers from unfavorable pharmacokinetic properties, but nonetheless, the results of this study suggest that rutin might be a good starting point for hit optimization.  相似文献   

14.
The COVID-19 pandemic caused by SARS-CoV-2 is a global burden on human health and economy. The 3-Chymotrypsin-like cysteine protease (3CLpro) becomes an attractive target for SARS-CoV-2 due to its important role in viral replication. We synthesized a series of 8H-indeno[1,2-d]thiazole derivatives and evaluated their biochemical activities against SARS-CoV-2 3CLpro. Among them, the representative compound 7a displayed inhibitory activity with an IC50 of 1.28 ± 0.17 μM against SARS-CoV-2 3CLpro. Molecular docking of 7a against 3CLpro was performed and the binding mode was rationalized. These preliminary results provide a unique prototype for the development of novel inhibitors against SARS-CoV-2 3CLpro.  相似文献   

15.
Trifluoromethyl-β-amino alcohol 11 [(4S)-tert-butyl 4-amino-6,6,6-trifluoro-5-hydroxyhexanoate] was synthesized in five steps starting from Cbz-l-Glu-OH 5 where the key step involved the introduction of the trifluoromethyl (CF3) group to oxazolidinone 7, resulting in the formation of silyl ether 8 [(4S,5S)-benzyl 4-(2-(tert-butoxycarbonyl)ethyl)-5-(trifluoromethyl)-5-(trimethylsilyloxy)oxazolidine-3-carboxylate]. Compound 11 was then converted into four tri- and tetra-glutamic acid and glutamine peptides (1-4) possessing a CF3-ketone group that exhibited inhibitory activity against severe acute respiratory syndrome coronavirus protease (SARS-CoV 3CLpro).  相似文献   

16.
The main protease (Mpro) is a major protease having an important role in viral replication of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the novel coronavirus that caused the pandemic of 2020. Here, active Mpro was obtained as a 34.5 kDa protein by overexpression in E. coli BL21 (DE3). The optimal pH and temperature of Mpro were 7.5 and 37 °C, respectively. Mpro displayed a Km value of 16 μM with Dabcyl-KTSAVLQ↓SGFRKME-Edans. Black garlic extract and 49 polyphenols were studied for their inhibitory effects on purified Mpro. The IC50 values were 137 μg/mL for black garlic extract and 9–197 μM for 15 polyphenols. The mixtures of tannic acid with puerarin, daidzein, and/or myricetin enhanced the inhibitory effects on Mpro. The structure–activity relationship of these polyphenols revealed that the hydroxyl group in C3′, C4′, C5′ in the B-ring, C3 in the C-ring, C7 in A-ring, the double bond between C2 and C3 in the C-ring, and glycosylation at C8 in the A-ring contributed to inhibitory effects of flavonoids on Mpro.  相似文献   

17.
The ongoing COVID-19 pandemic caused by SARS-CoV-2 highlights the urgent need to develop sensitive methods for diagnosis and prognosis. To achieve this, multidimensional detection of SARS-CoV-2 related parameters including virus loads, immune response, and inflammation factors is crucial. Herein, by using metal-tagged antibodies as reporting probes, we developed a multiplex metal-detection based assay (MMDA) method as a general multiplex assay strategy for biofluids. This strategy provides extremely high multiplexing capability (theoretically over 100) compared with other reported biofluid assay methods. As a proof-of-concept, MMDA was used for serologic profiling of anti-SARS-CoV-2 antibodies. The MMDA exhibits significantly higher sensitivity and specificity than ELISA for the detection of anti-SARS-CoV-2 antibodies. By integrating the high dimensional data exploration/visualization tool (tSNE) and machine learning algorithms with in-depth analysis of multiplex data, we classified COVID-19 patients into different subgroups based on their distinct antibody landscape. We unbiasedly identified anti-SARS-CoV-2-nucleocapsid IgG and IgA as the most potently induced types of antibodies for COVID-19 diagnosis, and anti-SARS-CoV-2-spike IgA as a biomarker for disease severity stratification. MMDA represents a more accurate method for the diagnosis and disease severity stratification of the ongoing COVID-19 pandemic, as well as for biomarker discovery of other diseases.

A MMDA platform is developed by using metal-tagged antibodies as reporting probes combined with machine learning algorithms, as a general strategy for highly multiplexed biofluid assay.  相似文献   

18.
In order to provide useful information for rational drug design, the ocular pharmacokinetics of l-carnosine (CAR) and its acetylized prodrug N-acetyl-l-carnosine (NAC) were investigated. The in vivo microdialysis sampling coupled with ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS-MS) was developed for continuously simultaneous monitoring of CAR and NAC in rabbit aqueous humor. The measured in vitro recoveries of the probe were 61.3% for CAR and 65.8% for NAC, while in vivo recoveries decreased to 43.1% for CAR and 43.0% for NAC, respectively. The method was sensitive with LLOQ 20.5 ng mL?1 for CAR and 20.4 ng mL?1 for NAC. The initial data indicated that the value of C max and AUC(0?C??) of NAC were higher than these of CAR (C max 2305 vs. 1,802 ng mL?1), (AUC(0?C??) 1,337 vs. 1,891 ng h mL?1), which indicated that the NAC exhibited better ocular bioavailability and duration. The method was rapid, specific and sensitive for continuously monitoring of aqueous humor and it was successfully applied to pharmacokinetic studies of CAR and NAC.  相似文献   

19.
SARS-CoV-2, or severe acute respiratory syndrome coronavirus 2, represents a new strain of Coronaviridae. In the closing 2019 to early 2020 months, the virus caused a global pandemic of COVID-19 disease. We performed a virtual screening study in order to identify potential inhibitors of the SARS-CoV-2 main viral protease (3CLpro or Mpro). For this purpose, we developed a novel approach using ensemble docking high-throughput virtual screening directly coupled with subsequent Linear Interaction Energy (LIE) calculations to maximize the conformational space sampling and to assess the binding affinity of identified inhibitors. A large database of small commercial compounds was prepared, and top-scoring hits were identified with two compounds singled out, namely 1-[(R)-2-(1,3-benzimidazol-2-yl)-1-pyrrolidinyl]-2-(4-methyl-1,4-diazepan-1-yl)-1-ethanone and [({(S)-1-[(1H-indol-2-yl)methyl]-3-pyrrolidinyl}methyl)amino](5-methyl-2H-pyrazol-3-yl)formaldehyde. Moreover, we obtained a favorable binding free energy of the identified compounds, and using contact analysis we confirmed their stable binding modes in the 3CLpro active site. These compounds will facilitate further 3CLpro inhibitor design.  相似文献   

20.
Chemical and spectroscopic studies of a new palladium(II) N-acetyl-L-cysteine complex are described. Elemental analyses for the solid complex are consistent with the formula [Pd(C5H8NO3S)2]?·?H2O or [Pd(NAC)2]?·?H2O. Solid-state 13C nuclear magnetic resonance (NMR), UV–Visible (UV–Vis) and infrared (IR) spectroscopic analyses are consistent with coordination of the ligand to palladium(II) through the nitrogen and sulfur atoms in a square-planar geometry. Thermogravimetric and differential thermal analyses confirmed the composition; final residue was identified as metallic palladium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号