首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
利用DSC方法研究了不同热历史条件对尼龙1212熔融行为的影响.不同的热历史条件下,在DSC曲线上,观察到尼龙1212产生2个或3个熔融峰,依据聚合物结晶理论,对各峰的来源进行了分析.在160℃下不同温度退火120 min的尼龙1212样品DSC曲线上,低温结晶熔融峰主要由低温结晶形成的一些微晶体或者片晶熔融产生,其晶体完善程度较差,熔融峰值较低,峰面积较小;主熔融峰是由样品在淬火过程中形成的晶体和升温过程中低温结晶形成的晶体的熔融重结晶形成较为完善的晶体熔融所产生,熔融峰值较高,峰面积较大.在不同的升温速率条件下,熔融峰温度有所移动,表明不同升温速率条件下产生的熔融峰的结晶晶型是相同的.在不同结晶时间下结晶,延长结晶时间对较高完善程度晶体的生长有利.在不同温度下依次退火处理的样品,熔融产生两个附加峰,这两个附加峰的峰温都比它们相应的退火温度高,而峰高和峰面积随退火温度降低而减小.根据等温结晶结果,由Hoffman方法确定了尼龙1212的平衡熔融温度为202.8℃.  相似文献   

2.
The most striking feature of the mechanism of thermal annealing of doubly oriented samples of low-density polyethylene (LDPE) and probably of high-density polyethylene (HDPE) is a progressive tilt of lamellar crystals around their crystallographic b axis. Such a rotation does not occur on thermal annealing in doubly oriented nylons. However, this rotation mechanism occurs during the thermal annealing of doubly oriented samples of nylon 11 in contact with a solvent below its dissolution temperature. As for oriented samples of polyethylene (PE), a correlation between the changes of macroscopic dimensions and long spacing obtained from the small-angle x-ray pattern is difficult to establish. In doubly oriented samples of nylon 11, the basal faces of the lamellar crystals are parallel to the a axis of the unit cell. Nevertheless, simple Miller indices cannot be assigned to the basal planes of the lamellae. On thermal annealing in formic acid, the basal planes of the lamellar crystals are, in some cases, parallel to (00l) planes. Annealing in formic acid at room temperature induces a phase transition: the chain c axis remains oriented along the rolling direction and the (00l) planes become parallel to the limiting planes of the lamellar crystals. Bulk doubly oriented samples of nylon 11 annealed in formic acid just below the “dissolution temperature” have the same texture of orientation as filter mats of single crystals grown from dilute solution; moreover, as these bulk specimens remain doubly oriented, they can be used for further physicochemical investigations. The usual interpretation of the small-angle x-ray pattern is also discussed on the basis of the results reported in this paper.  相似文献   

3.
Poly(tetramethyl-p-silphenylene siloxane) crystal mats initially prepared from benzene/methanol (2:1 v/v), when annealed in small amounts of solvent undergo considerable thickening in the chain direction. When the crystals are annealed above their formation temperature, their physical properties change rapidly at first before reaching an asymptotic limit commensurate with annealing time and type of solvent. Changes in melting temperature, heat of fusion, small-angle x-ray spacing, and wide-angle x-ray scattering patterns have been monitored for three solvents of varying solvent power, ranging from very good to extremely poor. Upon solution annealing, the original crystals mats equilibrate to more stable dimensions compatible with their environment. The activation energy of crystal thickening in contact with a liquid is estimated to be about an order of magnitude lower than that deduced from dry annealing data. It appears that the crystal surface and the crystalline core of the crystals comprising the mats must participate in the measured severalfold increase in long period noted after annealing. The lower surface (or interfacial) energy of the liquid annealed mats compared to isothermally melt-crystallized polymer of similar molecular weight has a direct bearing on the polymer morphology and crystallinity.  相似文献   

4.
Doubly oriented specimens with a single texture can be obtained by unidirectional rolling of a sheet of low-density polyethylene. Swelling of the oriented samples with liquid biphenyl and in situ crystallization of the biphenyl give indirect information about the morphology of the polymer. In such samples, annealed a few degrees below the melting temperature, the orientation of the biphenyl crystals is a consequence of the interaction of the two crystalline lattices. The (001) biphenyl planes are parallel to the (h01) limiting planes of the lamellar polymer crystals. Theoretical considerations show that the epitaxial conditions are best fulfilled when the limiting planes of the lamellas are parallel to (201) planes. The experimental value of h is 3.  相似文献   

5.
An annealing scheme for semicrystalline polymers is presented whereby a polymer is annealed in its solid-melt region, leading to crystals approaching the equilibrium crystals in terms of melting temperature. The annealing data is mathematically treated to estimate the equilibrium melting temperature (T0m) of polymer crystals. As is the case with any extrapolation procedure, there are minor shortcomings with our approach, but these are far outweighed by the advantages; the latter are exemplified by a comparison with the widely used Hoffman-Weeks method for estimating (T0m). The validity of our annealing scheme for the estimation of (T0m) is demonstrated by analysis of well-studied polymers such as nylon 6, polyethylene terephthalate (PET), polyethylene (PE), polypivalolactone (PPL), and polytetrafluoroethylene (PTFE); other polymers studied include polyether ether ketone (PEEK) and nylon 4,6.  相似文献   

6.
Small-angle X-ray scattering, wide-angle X-ray diffraction and differential scanning calorimetry analysis were carried out to evaluate the evolution of the supermolecular structure of poly(ethylene terephthalate) (PET) during isothermal crystallization and annealing process. PET was crystallized from the melt by isothermal treatments at 226 °C. Partially crystallized samples were prepared interrupting the crystallization by quenching, while prolonged treatments were performed to prepare annealed samples. The adopted crystallization procedures allowed to form crystals which developed during primary and secondary crystallization, and the annealing process. On the basis of X-ray data, the lamellar and amorphous phases were unambiguously attributed. The lamellar thickness and the crystallinity progressively enhance with increasing the time of thermal treatment; on the contrary, the long period decreases and this effect is mainly due to the contraction of the amorphous phase. The melting behaviour of the annealed samples indicates that the heating-induced crystal reorganization phenomena are inconsistent. The interdependency between the melting temperature and the crystal thickness allowed to extrapolate the equilibrium melting temperature.  相似文献   

7.
偏氟乙烯/三氟氯乙烯无规共聚物的结晶   总被引:6,自引:0,他引:6  
用示差扫描量热法(DSC)、广角X射线衍射(WAXD)和傅里叶红外光谱(FTIR)研究了偏氟乙烯/三氟氯乙烯单体摩尔比为1:4的无规共聚物的结晶与晶体结构.结果表明,该无规共聚物属于半结晶型聚合物.在333~353K温度范围内退火,片晶逐渐完善、增厚,熔点和结晶度均随着退火时间的延长而升高.于353K退火时,由DSC结果计算得到片晶厚度约4.68nm.在333K退火时得到共聚物的最大结晶度约为14%.WAXD测试结果表明,沿晶粒(101)晶面的面间距为0.55nm,垂直于(101)衍射晶面方向上的晶粒平均尺寸为5.86nm.  相似文献   

8.
The morphology of solution-grown single crystals of syndiotactic polypropylene with different degree of stereoregularity is compared. A sector formation phenomenon, found in some monolayer single crystals, is discussed in terms of possible crystallographic fold planes, growth planes, and gemination planes. A correlation between thermodynamic and morphological properties such as apparent enthalpy of fusion, critical long spacing, critical annealing temperature, and the number of configurational chain defects along the macromolecule has been found. Two endothermic peaks are observed in the DSC thermograms of single-crystal aggregates of syndiotactic polypropylene. The low-temperature peak is attributed to melting of crystals or parts of crystals with incorporated chain defects. The high-temperature peak corresponds to the melting endotherm of more regular crystalline zones. The peak-area ratio seems to depend on the degree of stereoregularity.  相似文献   

9.
Single crystals of linear polyethylene, prepared from a dilute xylene solution, were annealed below their melting temperature under atmospheric and 6 kbar pressure. In order to preserve the identity of the single crystals, they were suspended in an inert solvent medium, silicone oil and ethanol, during annealing. Examination of the annealed crystals under an electron microscope revealed development of numerous reorganization centers consisting of a central, elongated hole surrounded by a raised edge. Characteristics of these holes, especially their location and orientation, were interpreted in terms of the molecular packing that existed prior to the annealing and the mechanism of molecular reorganization that occurred during the annealing. The effect of high pressure was primarily to flatten out the crystals and to increase the number of reorganization centers, but the height of the raised edges remained about the same irrespective of the applied pressure. The present study also showed examples pointing to the importance of differentiating the annealing behavior of monolayer crystals from that of multilayer crystals.  相似文献   

10.
尼龙1010结晶与熔融行为的研究   总被引:3,自引:1,他引:3  
用DSC研究了降温速率R对尼龙10 10结晶与熔融的影响,以及室温(RT)和液氮(LN)骤冷退火样品的熔融.降温时结晶温度随R增大线性降低;T_g以上可完成结晶时结晶度相同;结晶起始温度>181℃生成的晶体有三个熔融峰,对应于环状和放射状球晶的转化与熔融;在181℃和T_g间结晶,无放射球晶转化峰;T_g下有结晶放热峰样品加热时有冷结晶发生.RT未退火样品三个熔融峰,退火温度T_α≥180℃样品两个峰,结晶度C∝T_a;LN未退火样品单一熔融峰,T_a>160℃双峰,T_a≤160℃三峰,低温峰温与C均∝T.  相似文献   

11.
Polyethylene crystals of different degrees of perfection were annealed at 5.1 kb pressure for 20 hr at various temperatures and analyzed by electron microscopy, thermal analysis, and density determination. No annealing took place until the temperature was close to the melting point of the starting material. Up to 235°C increasing solidstate annealing was observed. Mixed crystals of up to 0.989 g/cm3 density and 1500 Å thickness in the chain direction could be produced. At slightly higher temperature recrystallization to extended-chain crystals rather than annealing occurred. The annealing process at atmospheric pressure seems to be similar in nature, but takes much longer for comparable perfection. From a comparison of annealing and crystallization it is concluded that polymer crystallization goes through a stage of internally imperfect order during which most of the observed chain extension occurs. Estimates of this outer imperfect layer of a growing crystal place its depth at 30,000 Å.  相似文献   

12.
From glass transition Tg measurements on isotactic polystyrene (IPS)–poly(2,6-dimethyl phenylene oxide) (PPO) blends, it was concluded that thoroughly annealed, freeze-dried samples, or samples evaporated from solution at high temperature, are homogeneous. Without annealing, the freeze-dried blends show two to three Tg's characteristic of the presence of different phases. The overall crystallization rate of these samples is much higher than that observed with annealed samples. The presence of dissolved PPO in annealed samples reduces the overall crystallization rate and the spherulitic growth rate, compared to IPS. The melting behavior of the blends is influenced by the extent of mixing of both polymers. Without annealing, isothermally crystallized, freeze-dried blends show the same melting behavior as IPS (i.e., multiple melting). In homogeneous annealed samples the rate of reorganization is strongly reduced and multiple melting only occurs at low scanning rate (e.g., 1°C/min). This behavior is influenced by the crystallization temperature and by the composition of the blends. The addition of PPO has no influence on the relation between melting point and crystallization temperature and the same equilibrium melting point is found by extrapolation.  相似文献   

13.
A differential scanning calorimeter (DSC) was used to study the melting behavior of drawn nylon 6 yarns which were prevented from shrinking during heating. The DSC curves exhibit a single melting peak at a higher temperature instead of the double peaks which, as reported previously, were observed in the unconstrained state. The curve is explained quantitatively in terms of the perfecting of the original crystals followed by monotonic melting of these crystals during heating. The single peak results from the absence of the partial melting–recrystallization process which plays an important role in the appearance of double peaks. The temperature of the melting peak for the constrained sample increases linearly with draw ratio, and is unaffected by drawing temperature and by annealing at constant length after drawing. The elevation of the melting temperature is discussed on the basis of the entropy effects predicted theoretically by Zachmann. Thermal analysis of constrained samples has proved to be useful for detecting oriented crystals which coexist with unoriented ones.  相似文献   

14.
We reported the effects of annealing temperatures on microstructure and electrochemical properties of perovskite-type oxide LaFeO3 prepared by stearic acid combustion method. X-Ray diffraction(XRD) patterns show that the annealed LaFeO3 powder has orthorhombic structure. Scanning electron microscopy(SEM) and transmission electron microscopy(TEM) images show the presence of homogeneously dispersed, less aggregated, and small crystals(30-40 nm) at annealing temperatures of 500 and 600℃. However, as the annealing temperature was increased to 700 and 800℃, the crystals began to combine with each other and grew into further larger crystals(90-100 nm). The electrochemical performance of the annealed oxides was measured at 60℃ using chronopotentiometry, poten-tiodynamic polarization, and cyclic voltammetry. As the annealing temperature increased, the discharge capacity and anti-corrosion ability of the oxide electrode first increased and then decreased, reaching the optimum values at 600℃, with a maximum discharge capacity of 563 mA·h/g. The better electrochemical performance of LaFeO3 annealed at 600℃ could be ascribed to their smaller and more homogeneous crystals.  相似文献   

15.
Polycarbonate is known to crystallize thermally, but only slowly and to a limited (25%) extent. The melting points reported exhibit a wide variation. We have found that the melting temperature of polycarbonate may be drastically increased by employing a sequence of vapor-induced crystallization and annealing treatments. The crystals formed by the treatment with organic vapor act as a nucleation or precursor state for further crystallization into larger, more perfect lamellae. An initial peak melting temperature of 195°C has been annealed up to 239°C, and then to 295°C by a double-heat treatment. This sample is 60% crystalline, based on heat-of-fusion calculations. An equilibrium melting point of 335°C has been obtained for PC from an extrapolation of reciprocal lamellar thickness.  相似文献   

16.
Drawing of mats of linear polyethylene single crystals prepared from dilute solution is possible at temperatures above about 90°C. The structure and properties of the drawn specimens are much different from those ordinary drawn bulk polymer. Drawn mats have been investigated by differential scanning calorimetry. The characteristic experimental results are: (a) a broad melting curve, (b) considerable superheating depending on the rate of heating, (c) constancy of the melting point and the heat of fusion with annealing, (d) deviation from the relation between the heat of fusion and the density obtained for the drawn bulk specimens, (e) appearance of two melting peaks in samples annealed at temperatures above about 130°C. These results imply that the structure of the drawn mat is characterized by a larger number of the tie chains connecting the neighboring crystals (the structure postulated in earlier papers) than is the case in ordinary drawn bulk polymer. It can be concluded that the transformation of a fringed micellar type of structure to the folded lamellar structure may be difficult during annealing unless crystals melt and then recrystallize during cooling.  相似文献   

17.
When poly(butylene terephthalate) (PBT) is annealed, a second endotherm is often displayed in a subsequent scanning thermal analysis at a temperature below that of the original endotherm, and this new endotherm appears to grow with annealing at the expense of the original. This growth is not due to chemical changes, because the thermogram obtained before annealing is recovered after complete melting. But a physical change would also seem unlikely because the transformation of higher-melting into lower-melting crystals is generally prohibited by thermodynamics. Two hypotheses to explain the result were tested. The first is that higher-melting crystals are not transformed into lower-melting crystals. Instead, because of recrystallization during thermal analysis, the single endotherm that results without annealing overestimates the population of high-melting crystals present before the analysis. This hypothesis was tested by extending to annealing a mathematical analysis previously used to describe the thermal scanning behavior of specimens crystallized at different cooling rates. Though most features of the thermograms obtained after annealing were able to be described, the decrease in the higher-temperature endotherm concomitant with growth of the lower endotherm was not. The second hypothesis is that the transformation of higher-melting to lower-melting crystals during annealing is allowed because it is coupled to the crystallization of formerly amorphous material. The amount of such crystallization observed for PBT was found to be sufficient to satisfy thermodynamic requirements, suggesting that this hypothesis is correct. © 1994 John Wiley & Sons, Inc.  相似文献   

18.
Annealing of poly(butylene terephthalate) (PBT) was studied by differential scanning calorimetry (DSC) and small angle X‐ray scattering (SAXS) measurement. A PBT sample was annealed at a recrystallization temperature where recrystallization occurs with a maximum rate in the heating process of the sample. In the subsequent annealing steps, the annealed sample was annealed repeatedly at the recrystallization temperatures, and the stepwise annealing sample was obtained. Peak melting temperature (Tm) and sharpness of DSC peak of the stepwise annealing sample increased with the annealing step. A high melting‐temperature sample was obtained in a short time, and Tm increased up to 238.5°C which is higher than all the Tm values that appear in the literature. The long period calculated from SAXS curves of the stepwise annealing sample increased with the annealing step. The increase of crystallite size and perfection of the crystal in the stepwise annealing process is suggested. Annealing experiment indicated that T°m should be higher than about 235°C. Tm increased linearly with the annealing temperature of the final step in the stepwise annealing (Ta). The equilibrium melting temperature (T°m) for PBT was estimated to be 247°C by the application of a Hoffman–Weeks plot to the relation between Tm vs. Ta. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 2420–2429, 1999  相似文献   

19.
CRYSTALLIZATION AND MELTING OF NYLON 610   总被引:1,自引:0,他引:1  
Differential scanning calorimetry was used to study the crystallization andmelting of nylon 610. For nylon 610 crystallized from the melt state (260℃), the overall rateof bulk crystallization can be described by a simple Avrami equation with Avrami exponentn ≈ 2, independent of crystallization temperature. With the experimentally obtainedT_m~0 (235℃ ~ 255℃) of nylon 610, the fold surface free energy σ_e was determined to be35 ~38 erg/cm~2. The effects of annealing temperature and time on the melting of quenchednylon 610 were also investigated. For nylon 610 quenched at room temperature there isonly one DSC endotherm peak DSC scans on annealed samples exhibited an endothermpeak at approximately 10℃ above the annealing temperature. The size and position of theendothermic peak is strongly related to annealing temperature and time. An additionalthird melting was observed when quenched nylon 610 was annealed at high temperaturefor a sufficiently long residence time. The existence of the third melting peak suggests thatmore than one kind of distribution of lamella thickness may occur when quenched nylon610 is annealed. The implications of these results in terms of crystal thickening mechanismwere discussed.  相似文献   

20.
The origin of double melting behavior of poly(p‐phenylene succinate) (PPSc) was investigated by differential scanning calorimetry (DSC) and wide‐angle X‐ray diffraction. As‐polymerized PPSc showed two melting peaks: the low melting (LM) and high melting (HM) peaks at 286 and 311 °C, respectively. When PPSc was annealed at 270 °C, the LM peak constantly shifted toward higher temperatures and grew in its area with annealing time, and eventually merged into the HM peak located at 308 °C. X‐ray diffractograms of PPSc annealed at 270 °C became sharper with increasing the annealing time while the peak positions did not change. The X‐ray diffractograms obtained from the LM and the HM peak exhibited the same diffraction peaks. It was concluded from these results that the double melting behavior of PPSc is due to the distribution of crystals having the same crystal form but differing in size and perfection. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 1868–1871, 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号