首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The first decade of the 21st century has been labeled as the sensing decade. The functional nanomaterials offer excellent platforms for fabrication of sensitive biosensing devices, including optical and electronic biosensors. A lot of works have fo- cused on the biofunctionalization of different nanomaterials, such as metal nanoparticles, semiconductor nanoparticles and carbon nanostructures, by physical adsorption, electrostatic binding, specific recognition or covalent coupling. These biofunc- tionalized ...  相似文献   

2.
Inorganic nanomaterials have attracted substantial research interest due to their unique intrinsic physicochemical properties.We highlighted recent advances in the applications of inorganic nanoparticles regarding their imaging efficacy, focusing on tumor-imaging nanomaterials such as metal-based and carbon-based nanomaterials and quantum dots. Inorganic nanoparticles gain excellent in vivo tumor-imaging functions based on their specific characteristics of strong near-infrared optical absorption and/or X-ray attenuation capability. The specific response signals from these novel nanomaterials can be captured using a series of imaging techniques, i.e., optical coherence tomography(OCT), X-ray computed tomography(CT) imaging, two-photon luminescence(TPL), photoacoustic tomography(PAT), magnetic resonance imaging(MRI), surface-enhanced Raman scattering(SERS) and positron emission tomography(PET). In this review, we summarized the rapid development of inorganic nanomaterial applications using these analysis techniques and discussed the related safety issues of these materials.  相似文献   

3.
Photodynamic therapy (PDT) is a treatment modality in which a photosensitizer is irradiated with light, producing reactive oxygen species, often via energy transfer with oxygen. As it is common for tumors to be hypoxic, methods to deliver photosensitizer and oxygen are desirable. One such approach is the use of perfluorocarbons, molecules in which all C–H bonds are replaced with C–F bonds, to co-deliver oxygen because of the high solubility of gases in perfluorocarbons. This review highlights the benefits and limitations of several fluorinated nanomaterial architectures for use in PDT.  相似文献   

4.
5.
宋雪娇  刘庄 《化学通报》2015,78(4):292-298
光热治疗是利用在近红外具有较强光吸收的材料将光能转化为热能从而杀死癌细胞,与传统的化疗、放疗相比具有副作用小、治疗特异性好的优点。近年来各种不同的纳米材料被用于肿瘤光热治疗,并在动物肿瘤模型实验中取得了令人鼓舞的治疗效果。本文重点介绍几种典型的有机纳米材料在光热治疗中的应用,并讨论这一新兴领域的发展趋势。  相似文献   

6.
《中国化学快报》2020,31(12):3143-3148
Surface modification by poly(ethylene glycol) (PEGylation) has been acknowledged as a powerful strategy in minimizing non-specific reactions for biomedical devices. Once applied into manufacture of drug/gene delivery systems, PEGylation has demonstrated to significantly improve their biocompatibility and stealthiness in physiological environment. Nonetheless, reluctant cell membrane affinities thus cellular uptake efficiencies owing to PEGylation brought up further issues that are imperative to be resolved. Pertain to this PEGylation dilemma, we attempted to introduce peptide (GPLGVRG) linkage between block copolymer of PEG-poly{N'-[N-(2-aminoethyl)-2-aminoethyl]aspartamide} PAsp(DET), wherein the cationic PAsp(DET) could self-assemble with pDNA into nanoscaled complex core. Noteworthy was the peptide linkage whose amino acids sequence could be specifically recognized and degraded by matrix metalloproteinases (MMPs) (overexpressed in extracellular milieu of tumors). Therefore, our subsequent studies validated facile detachment of PEGylation from the aforementioned polyplex micelles upon treatment of MMPs, which elicited improved cytomembrane affinities and cellular uptake efficiencies. In addition, promoted escape from endosome entrapment was also confirmed through direct endosome membrane destabilization by PAsp(DET), which was further elucidated to be attributable to dePEGylation as well as elevated charged density of PAsp(DET) in acidic endosomes. These benefits from dePEGylation eventually contributed to promoted gene expression at the affected cells and potent tumor growth suppression based on anti-angiogenic approach. Therefore, our developed strategy has provided a facile approach in overcoming the dilemma of PEGylation, which could be informative in design of drug/gene delivery systems.  相似文献   

7.
Surface modification by poly(ethylene glycol) (PEGylation) has been acknowledged as a powerful strategy in minimizing non-specific reactions for biomedical devices. Once applied into manufacture of drug/gene delivery systems, PEGylation has demonstrated to significantly improve their biocompatibility and stealthiness in physiological environment. Nonetheless, reluctant cell membrane affinities thus cellular uptake efficiencies owing to PEGylation brought up further issues that are imperative to be resolved. Pertain to this PEGylation dilemma, we attempted to introduce peptide (GPLGVRG) linkage between block copolymer of PEG-poly{N'-[N-(2-aminoethyl)-2-aminoethyl]aspartamide} PAsp(DET), wherein the cationic PAsp(DET) could self-assemble with pDNA into nanoscaled complex core. Noteworthy was the peptide linkage whose amino acids sequence could be specifically recognized and degraded by matrix metalloproteinases (MMPs) (overexpressed in extracellular milieu of tumors). Therefore, our subsequent studies validated facile detachment of PEGylation from the aforementioned polyplex micelles upon treatment of MMPs, which elicited improved cytomembrane affinities and cellular uptake efficiencies. In addition, promoted escape from endosome entrapment was also confirmed through direct endosome membrane destabilization by PAsp(DET), which was further elucidated to be attributable to dePEGylation as well as elevated charged density of PAsp(DET) in acidic endosomes. These benefits from dePEGylation eventually contributed to promoted gene expression at the affected cells and potent tumor growth suppression based on anti-angiogenic approach. Therefore, our developed strategy has provided a facile approach in overcoming the dilemma of PEGylation, which could be informative in design of drug/gene delivery systems.  相似文献   

8.
In this account, the reactive oxygen species (ROS) in photodynamic therapy (PDT) were deliberately reviewed. First, the specific definition of ROS and PDT were readily clarified. Afterward, this review focuses on the fundamental principles and applications of PDT. Due to strong oxidation ability of radicals (e.g., •OH and O2•-) and non-radical (e.g., 1O2 and H2O2), these ROS would attack the in vitro and in vivo tumor cells, thus achieving the goal of cancer treatment. Then, ROS in PDT for cancer treatment was thoroughly reviewed, including the mechanism and photosensitizer (PS) selection (i.e., nanomaterials). Ultimately, emphasis was made on the challenges, research gap, and prospects of ROS in cancer treatment and critically discussed. Hopefully, this review can offer detailed theoretical guidance for the researchers who participate in the study regarding ROS in PDT.  相似文献   

9.
Since mechanical exfoliation of graphene in 2004, unprecedented scientific and technological advances have been achieved in the development of two-dimensional (2D) nanomaterials. These 2D nanomaterials exhibit various unique mechanical, physical and chemical properties on account of their ultrathin thickness, which are highly desirable for many applications such as catalysis, optoelectronics, energy storage/conversion, as well as disease diagnosis and therapeutics. In this review, we summarized recent progress on the design and fabrication of functional 2D nanomaterials capable of being applied for the cancer treatment including drug delivery, photodynamic therapy, and photothermal therapy. Their anticancer mechanisms were discussed in detail, and the related safety concerns were analyzed based on current research developments. This review is expected to provide an insight in the field of 2D nanostructured materials for anticancer applications.  相似文献   

10.
Soft attachment of streptavidin to β-cyclodextrin-modified pegylated SAMs was efficiently performed in a reversible and repetitive way via orthogonal bifunctional linkers involving streptavidin-biotin recognition and redox-driven multivalent host-guest (β-cyclodextrin-ferrocene) interactions.  相似文献   

11.
鞠熀先 《分析试验室》2003,22(Z1):347-349
通过电化学和光学方法,开展蛋白质与DNA分析、生物功能传感等生物分析化学方面的研究,建立方便、特异、高灵敏的肿瘤标志物的免疫分析新方法,为临床疾病诊断提供新途径.  相似文献   

12.
The preparative flexibility of hydrothermal syntheses needs to be systemised for exploring complex structure-synthesis relationships and morphology control options in materials chemistry. This is demonstrated for the targeted hydrothermal preparation of molybdenum oxide materials: firstly, in situ studies were employed for the efficient production of MoO(3) nanofibres. Furthermore, ionic substances as structure-directing tools brought forward a new class of fluorinated polyoxomolybdates.  相似文献   

13.
SiO(2)-supported clusters of tantalum were synthesized from adsorbed Ta(CH(2)Ph)(5) by treatment in H(2) at 523 K. The surface species were characterized by X-ray absorption spectroscopy (extended X-ray absorption fine structure (EXAFS) spectroscopy and X-ray absorption near edge spectroscopy (XANES)) and ultraviolet-visible spectroscopy. The EXAFS data show that SiO(2)-supported tantalum clusters were characterized by a Ta-Ta coordination number of approximately 2, consistent with the presence of tritantalum clusters, on average. When these were reduced in H(2) and reoxidized in O(2), the cluster nuclearity remained essentially unchanged, although reduction and oxidation occurred, respectively, as shown by XANES and UV-vis spectra; in the reoxidation, the tantalum oxidation state change was approximately two electronic charges per tritantalum cluster. The data demonstrate an analogy between the chemistry of group 5 metals on the SiO(2) support and their chemistry in solution, as determined by the group of Cotton.  相似文献   

14.
Chen XM  Wu GH  Jiang YQ  Wang YR  Chen X 《The Analyst》2011,136(22):4631-4640
Similar to its popular older cousins of fullerene and carbon nanotubes (CNTs), the latest form of nanocarbon, graphene, is inspiring intensive research efforts in its own right. As an atomically thin layer of sp(2)-hybridized carbon, graphene possesses spectacular electronic, optical, magnetic, thermal and mechanical properties, which make it an exciting material in a variety of important applications. In this review, we present the current advances in the field of graphene electroanalytical chemistry, including the modern methods of graphene production, and graphene functionalization. Electrochemical (bio) sensing developments using graphene and graphene-based materials are summarized in more detail, and we also speculate on their future and discuss potential progress for their applications in electroanalytical chemistry.  相似文献   

15.
In this work, the synthesis, characterization, and applications of branched oligothiophene dendrons that act as electroactive surfactants for the capping of Au metal nanoparticles and CdSe quantum dots are described. Two distinct methods have been employed for synthesis: a ligand exchange process and a direct-capping synthesis approach. The coverage of the dendrons per nanocrystal, the nature of the surface coordination interactions, and energy transfer interactions were studied in detail using UV-vis absorbance, FT-IR, AFM, TEM, and photoluminescence spectroscopy. The competition/displacement in ligand metathesis is highlighted by the size of the dendron and nature of binding on semiconductor nanocrystals. In the other system using the direct capping method, the size of the Au nanoparticle is mediated by the dimensions of the ligand, i.e. alkyl chain spacer and dendron branching or size. These hybrid dendron/nanoparticle complexes are generally very soluble and stable in non-polar solvents. They exhibit energy transfer, surface plasmon resonance effects, and photoinduced charge transfer interactions between the metal/semiconductor and conjugated ligands. Adsorption on mica and graphite surfaces was observed. A one-layer photovoltaic cell was fabricated to demonstrate the potential for device applications.  相似文献   

16.
Russian Chemical Bulletin - New magnetic nanomaterials based on soluble ferrocene-containing polyphenylenes were synthesized at 20–80 °C both under normal conditions and under ultrasonic...  相似文献   

17.
Due to the severe environmental issues, many advanced technologies, typically fuel cells and metal-air batteries have aroused widespread concerns and been intensively studied in recent years. However, oxygen redox reactions including oxygen evolution reaction(OER) and oxygen reduction reaction(ORR) as the core reactions suffer from sluggish kinetics of the multiple electron transfer process. Currently, Pt, RuO_2, and IrO_2 are considered to be the benchmark catalysts for ORR and OER, but their high price, scarcity and instability hinder them from large-scale application. To overcome these limits, exploring alternative electrocatalysts with low cost, high activity, long-term stability, and earth-abundance is of extreme urgency. Metal-organic frameworks(MOFs) are a family of inorganic-organic hybrid materials with high surface areas and tunable structures, making them proper as catalyst candidates. Herein, the recent progress of MOFs and MOF-derived materials for ORR and OER is systematically reviewed, and the relationship between compositions and electrochemical performance is discussed. It is expected that this review can be helpful for the future development of related MOF-based materials with excellent electrochemical performance.  相似文献   

18.
Conducting polymers possess good conductivity, can be easily modified, have a particular redox activity. Noble metal nanomaterials, in turn, possess high conductivity, catalytic properties and large surface-to-volume ratios. Synergistic materials consisting of both conducting polymer and metal nanomaterial therefore are most useful materials for use in electrochemical immunosensors with improved sensitivity and specificity. This review (with 75 references) gives an overview on advances in conducting polymer based noble metal nanomaterial hybrids for amperometric immunoassay of the 13 most common tumor markers. The review is divided into the following sections: (1) Polyaniline based noble metal nanomaterial hybrids; (2) Polyaniline derivative-based noble metal nanomaterial hybrids; (3) Polypyrrole-based noble metal nanomaterial hybrids. A final section covers future perspectives regarding challenges on the design of electrochemical immunoassays.
Graphical abstract Advances on conducting polymer and noble metal nanomaterial hybrids for amperometric immunoassay of tumor marker are reviewed. Future perspectives regarding challenges on the construction of electrochemical immunosensing interface for tumor marker are discussed.
  相似文献   

19.
The heavy metal ions,especially Cd~(2+),Pb~(2+) and Hg~(2+),show extremely hazard to the environment and human being.The measurement of heavy metal ions using sensors is catching more and more attention for its advantages of high sensitivity and selectivity,low-cost,convenience to handle and rapid detection.In recent years,nanomaterials such as gold nanoparticles(NPs),magnetic nanoparticles,graphene and nanocomposite materials are applied in sensors for improving sensitivity and selectivity,making the research on electrochemical(EC) sensors,spectrometric biosensors and colorimetric biosensors become a hot spot in the application to investigate heavy metal ions,in particular,Cd~(2+),Pb~(2+) and Hg~(2+).In this short review,the research of advanced detection of Cd~(2+),Pb~(2+) and Hg~(2+) and its progress based on nanomaterial sensors in recent years is reviewed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号