首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
DSC和SEM研究结果表明聚苯乙烯(PS)与一种热致液晶聚合物(LCP)(PHB/PET(60/40)共聚酯)完全不相容.共混体系具有与组分无关的Tg,并且表现出明显的两相结构.将PS进行化学改性(引入磺酸基团)制备成磺化聚苯乙烯(SPS),随中和盐离子的变化有:酸式、Li、Na、Zn和Mn盐五种形式.用DSC和SEM对LCP与SPS共混物的热性能和形态进行了分析和表征.共混体系有一个与组成相关,且明显低于纯SPS的Tg.这表明了PS与LCP的相容性因为磺酸基团的引入而得到了改善.同时用Fox方程计算了LCP的Tg.当SPS含量较低时(不大于50%)在各个共混体系中,所估算的LCP的Tg相互吻合.表明共混体系满足Fox方程的前提条件,即LCP与SPS形成相容体系.当SPS含量较低时(25%),LCP/SPS的共混物为较均一体系,断面光滑;而SPS含量较高时,在脆断面可以观察到纳米级的颗粒.电子能谱分析证明了这些颗粒是SPS负离子的聚集体.  相似文献   

2.
A method is proposed to determine the interfacial tension of immiscible blends containing a liquid crystalline polymer (LCP) and a flexible-molecule polymer, under flow conditions. The method is based on Taylor's theorem for immiscible fluids, i.e., that a suspended drop of liquid A in liquid matrix B is deformed in shear or elongational flow in proportion to the ratio of interfacial to viscous stresses. Taylor's theorem, as originally derived, applies to low concentrations, Newtonian fluids and small deformations. Thus, the theorem was modified to account for “Power Law” fluids in elongational flow and large deformations, more applicable to the system under investigation. The elongational viscosities of the LCP and the flexible polymer (polycarbonate) as a function of elongational rate were determined using converging type flow. The two polymers exhibited a Power-Law behavior in elongational flow and, hence, the experimental constitutive equations of state were used to quantify the viscous stresses. The interfacial stresses were modified for large deformations by taking into consideration the deformed shape and hence increased surface area of the elongated LCP particle. Using the modified expression, the interfacial tension of LCP and PC was determined to be in the range of 5–6.6 dyne/cm.  相似文献   

3.
Abstract

Polyester elastomer (PEL) blends having a hard segment of polyester (PBT), soft segment of polyether (PTMG), and a liquid crystalline copolyester (LCP), poly(benzoate-naphthoate) were prepared with a twin-screw extruder. Test specimens for thermal properties were prepared by injection molding. Rheological properties and morphology were investigated by Instron capillary rheometer (ICR) and scanning electron microscopy (SEM). Thermal properties of the LCP/PEL blends were investigated by DSC, dilatometer, heat deflection temperature tester, and a Rheovibron viscometer. DSC study revealed a partial miscibility between LCP and PEL. It was found that the LCP acted as a nucleating agent for the crystallization of PEL in the LCP/PEL blends. The dimensional and thermal stability of the blends were increased by increasing the LCP cont-ent. The storage modulus (E' was improved by increasing the LCP content. The blend viscosity showed a minimum value at 5 wt% of LCP which increased by increasing the LCP content above 5 wt% of LCP The morphology of the LCP/PEL blends showed poor interfacial adhesion between the two phases, and the fibrillar structure of LCP phase in the matrix was affected by the LCP content, shear rate, and extrusion temperature. The morphology of the blends was found to be affected by their compositions and processing conditions.  相似文献   

4.
向聚苯乙烯(PS)中引入磺酸基团可以有效地改善PS与一种热致液晶聚合物(LCP)之间的相容性.用溶液共混的方法制备了PS和磺化聚苯乙烯(HSPS)与LCP的共混物.用FTIR以及红外光谱的合成技术对LCP共混体系进行了表征.共混物中组分聚合物特征吸收的位置和谱图的形状表明在LCP与PS分子间没有相互作用发生,而在LCP与HSPS分子间则存在较强的相互作用.谱图差减技术确认了LCP分子中CO与CO基团和HSPS中的磺酸基团参与了相互作用,使得这些基团的特征吸收发生了偏移.  相似文献   

5.
离聚物在液晶聚合物与聚碳酸酯共混体系中的增容作用   总被引:3,自引:2,他引:1  
离聚物在液晶聚合物与聚碳酸酯共混体系中的增容作用刘杰何嘉松(中国科学院化学研究所工程塑料国家重点实验室北京100080)关键词增容作用,离聚物,热致液晶聚合物原位复合材料(In situcomposite)是一种新兴的复合材料,是由热致液晶聚合...  相似文献   

6.
Liquid crystalline polymer/polyamide 66 (LCP/PA66) and LCP/poly(butyl terephthalate) (LCP/PBT) blends were compounded using a Brabender Plasticorder equipped with a mixing chamber. The LCP employed was a semi-flexible liquid crystalline copolyesteramide based on 30 mol% of p-amino benzoic acid (ABA) and 70 mol% of poly(ethylene terephthalate) (PET). The Flory-Huggins interaction parameters (χ12) of the LCP/ PA66 and LCP/PBT blends are estimated by melting point depression from DSC measurement. The results indicate that c12 values all are negative for LCP/PA66 and LCP/PBT blends, and when the LCP content in these blends is more than 10 mass%, the absolute value of χ12 decreases. Thereby, we can conclude that LCP/PA66 and LCP/PBT blends are fully miscible in the molten state, the molecular interaction between the LCP and PA66 is stronger than that between LCP and PBT. As the LCP content in LCP/PA66 and LCP/PBT blends is more than 10 mass%, the molecular interaction between LCP and matrix polymer decreases. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

7.

The miscibility, crystallization and melting behaviour of poly(trimethylene terephthalate)/thermotropic liquid crystalline polymer (LCP) blends were studied using differential scanning calorimetry. The blends were found to form primarily an immiscible system. The addition of LCP accelerated the overall rate of crystallization and caused a depression in equilibrium melting temperature, especially at low LCP content. Lauritzen–Hoffman analysis showed that the addition of LCP caused a reduction in the fold surface energy and increased the regime II to III transition temperature.

  相似文献   

8.
微孔聚合物是80年代初发明的一种新型多孔材料,其特征为:泡孔直径1~10 μm,泡孔密度109~1012cells/cm3,相对密度0.05~0.95.具有缺口冲击强度高、韧性高、比强度高、疲劳寿命长、热稳定性高、介电常数低和导热系数低等优异性能.同时,制备微孔聚合物使用无公害、易回收的CO2和N2替代对臭氧层有害的氯氟烃(氟利昂)和易燃的碳氢化合物等作为发泡剂,是一种新型绿色材料[1].在微孔聚合物中使用超临界流体是90年代初提出的新方法[2~4],可缩短加工时间,同时制得泡孔直径更小、泡孔密度更大的微孔材料.目前研究中,对聚合物多相体系的研究报道很少,只有HIPS[5]、PE/iPP[6]和PVC/木纤维复合材料[7]等少数体系的报道,而聚合物多相体系的研究是材料科学的主要研究领域.可以预见,加入少量第二组分的共混物为基体的微孔材料可以达到更为优异的性能.本工作选择聚苯乙烯与热致液晶聚合物的原位复合材料为研究对象,采用超临界CO2快速降压法[3]制备微孔材料.在前期工作中,报道了该材料是一种综合了液晶聚合物的高强度和聚苯乙烯微孔材料轻质、高抗冲、保温隔音性能的具有仿生结构的新型复合材料[8].本文在此基础上,进一步研究热致液晶聚合物的加入对微孔结构的影响以及界面相容剂在微孔成型中的作用.  相似文献   

9.
Journal of Thermal Analysis and Calorimetry - The morphology, isothermal crystallization and melting behaviour of melt-mixed nylon 6,6/Vectra A950 liquid crystalline polymer (LCP) blends were...  相似文献   

10.
Nylon‐6/glass‐fiber (GF)/liquid‐crystalline‐polymer (LCP) ternary blends with different viscosity ratios were prepared with three kinds of nylon‐6 with different viscosities as matrices. The rheological behaviors of these blends were characterized with capillary rheometry. The morphology was observed with scanning electron microscopy and polarizing optical microscopy. This study showed that although LCP did not fibrillate in binary nylon‐6/LCP blends, LCP fibrillated to a large aspect ratio in some ternary blends after GF was added. The addition of 5 wt % LCP significantly reduced the melt viscosity of nylon‐6/GF blends to such an extent that some nylon‐6/GF/LCP blends had quite low viscosities, not only lower than those of neat resins and nylon‐6/GF blends but also lower than those of corresponding nylon‐6/LCP blends. The mutual influence of the morphology and rheological properties was examined. The great reduction of the melt viscosity was considered the result of LCP fibrillation. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 1619–1627, 2004  相似文献   

11.
The ternary blends of acrylate rubber (ACM), poly(ethyleneterephalate) (PET), and liquid crystalline polymer (LCP) were prepared by varying the amount of LCP, but fixing the ratio of ACM and PET using melt mixing procedure. The compatibility behavior of these blends was investigated with infrared spectroscopy (IR), differential scanning calorimetry (DSC), and dynamic mechanical analyzer (DMA). The IR results revealed the significant interaction between the blend components. Glass transition temperature (Tg) and melting temperature (Tm) of the blends were affected depending on the LCP weight percent in the ACM/PET, respectively. This further suggests the strong interfacial interactions between the blend components. In the presence of ACM, the nucleating effect of LCP was more pronounced for the PET. The thermogravimetric (TGA) study shows the improved thermal stability of the blends.  相似文献   

12.
《European Polymer Journal》1986,22(6):487-490
The thermal analysis characteristics of ternary blends polystyrene(PS)/polycarbonate(PC)/tetramethylpolycarbonate (MPC) show that the PS forms mostly a pure PS phase, whereas the PC and MPC go into a second phase very close to a binary blend of the same PC/MPC weight composition. However, an additional broad glass transition is observed for most blends within the same temperature range (129–133°). On the other hand, the viscoelastic properties of the ternary blends containing 75% PC/MPC weight fraction exhibit an additional low frequency (large relaxation times) relaxation domain. This relaxation domain might be attributed either to a PS/MPC interphase or to PS “trapped” at the PS-PC/MPC interphase.  相似文献   

13.
Nucleating and transcrystallization behaviour of additives in engineering PP composites and the effect of modified interfacial structure is the subject of this series of papers. The first part concentrates on polypropylene/liquid crystalline polyester blends. Increased crystallisation temperature and degree of crystallinity of polypropylene is characteristic to the blends containing different amount of LCP additive. Transcrystallization process governs the formation of crystalline structure in these systems in course of isothermal crystallisation at 132C. The nucleating effect of LCP gives rise to more uniform crystalline structure in the polypropylene phase.The financial support of the OTKA 014194 is acknowledged with gratitude.  相似文献   

14.
The inherent miscibility and effects of reaction-induced changes on the phase behaviour of blends of poly(trimethylene terephthalate) (PTT) with bisphenol-A polycarbonate (PC) were studied. The as-prepared (solution-cast) blends exhibited two well-spaced and separated glass transition temperatures (Tgs) and a heterogeneous phase-separated morphology, indicating an immiscible system. However, after annealing at high temperature (at 260 °C), the blends original two Tgs merged into one single Tg, and the annealed blends exhibited a homogeneous morphology, and turned from having a semicrystalline into having an amorphous nature upon extended annealing. The annealing-induced changes of phase behaviour in the blends were analyzed. The homogenization process of the blends upon heating is attributed to chemical transreactions between the PTT and PC chain segments, as evidenced with FT-IR characterization. The IR result showed a new aryl C-O vibration peak at 1,070 cm–1 for the annealed blends, which is characteristic of an aromatic polyester structure formed from exchange reactions between PTT and PC. The transreactions between PTT and PC led to a random copolymer comprised of PC/PTT segments, which is believed to serve as a compatibilizer at the beginning stage of transreactions, but at later stage, the random copolymer became the main species of blends and turned to a homogeneous and amorphous phase.  相似文献   

15.
Polystyrene/polydivinyl benzene (PS/PDVB) composite microspheres of narrow size distribution were prepared by a single-step swelling process of uniform PS microspheres with DVB and benzoyl peroxide, followed by polymerization of DVB within the microspheres. Dissolution of the PS template resulted in porous uniformly sized PDVB microspheres. New, solid, non-halogenated, fire-retardant composite microspheres of narrow size distribution were prepared by encapsulation of resorcinol bis (diphenyl phosphate) (RDP) within the pores of the PDVB microspheres. The encapsulation was performed by two different methods as follows: (1) vacuum and (2) heat/cool cycles. The loading capacity of the RDP into the PDVB particles was elucidated. PS/PDVB-RDP blends were prepared by mixing PS with the PDVB-RDP microspheres. Thermogravimetric analysis (TGA) illustrated that the thermal stability of the PS increases as the content (10–40 %) of the PDVB-RDP increased. Polycarbonate/poly(acrylonitrile-butadiene-styrene)/PDVB-RDP (PC/ABS/PDVB-RDP) blends were prepared by melting PC/ABS together with the PDVB-RDP microspheres at 250 °C and then pelleting it in an injection molding machine at 250 °C and 40 t. The improved thermal stability of the PC/ABS by blending it with PDVB-RDP was demonstrated by a vertical burn test on PC/ABS/PDVB-RDP bones.  相似文献   

16.
Blends of poly(carbonate of bisphenol A) (PC) with minute amounts of a nanocomposite based in polyamide 6 (PA6) with a layered organoclay (nPA6) were obtained upon melt mixing by varying the contents of both nPA6 and organoclay. The ternary nanocomposites (NC) were composed of a PC-rich matrix with some mixed PA6 present, and by a neat nPA6 dispersed phase. Upon dissolution of the matrix of the NC’s, the dispersed phase showed a highly fibrillar morphology that resembled that of thermoplastic/liquid crystalline polymer (LCP) blends. The cryogenically fractured surfaces observed by SEM showed a very fine particle size that was attributed to the presence of PA6 in the matrix and indicated a low interfacial tension. The Young’s modulus behaviour is proposed to be a consequence of the slight orientation of the PC-rich matrix and the highly fibrillated and oriented nPA6 dispersed phase. The important reinforcement effect of the dispersed phase is attributed to the additive effects of its large degree of orientation, and the reinforcing effect of the organoclay.  相似文献   

17.
离聚物对含液晶聚合物聚砜体系的增容作用   总被引:3,自引:3,他引:3  
离聚物对含液晶聚合物聚砜体系的增容作用刘杰,何嘉松(中国科学院化学研究所工程塑料国家重点实验室北京100080)关键词增容作用,离子聚合物,热致液晶聚合物,高分子共混物,原位复合材料工程塑料与液晶聚合物(Lry)共混(形成所谓的原位复合材料)时在降低...  相似文献   

18.
The potential of polystyrene/polymethylphenylsiloxane (PS/PMPS) blends as a matrix for nanocomposites is investigated. It was proven by dynamic rheometry and conductivity measurements that PMPS effectively disperses carbon nanotubes, as was already known for polydimethylsiloxane (PDMS). The phase behaviour of PS/PMPS blends was investigated using differential scanning calorimetry or modulated temperature differential scanning calorimetry. The blends were found to exhibit partial miscibility, in contrast to the known immiscible behaviour of PS/PDMS blends. A miscibility window exists for PS/PMPS blends containing less than approximately 10 wt% PMPS.  相似文献   

19.
A calorimetric study of blends of poly(ethylene terephthalate-co-p-oxybenzoate), PET/PHB, with poly(butylene terephthalate), PBT has been carried out in the form of as-spun and drawn fibres. DSC melting and crystallization results show that PBT is compatible with LCP and the crystallization of PBT decreases by the addition of LCP in the matrix. The crystallization behaviour of blend fibres is investigated as a function of temperature of crystallization. A detailed analysis of the crystallization course has been made utilizing the Avrami expression. The isothermal calorimetric measurements provide evidence of decrease of rate of crystallization of PBT on addition of the liquid crystalline component up to about 50% by weight. The values of the Avrami exponents change in the temperature range from 200° to 215°C. Dimensionality changes in crystallization could be due to LCP mesophase-transition.  相似文献   

20.
Previous work has demonstrated that compatible blends of main-chain liquid crystal polymers (LCP) with side-chain LCP's can be prepared. The present work was carried out to extend the scope and application of this finding to liquid crystal polyesters, similar to commercially available LCP's and to demonstrate the effect of the blend composition upon the physical and mechanical properties. A series of melt-processable main-chain polyesters was prepared as well as a series of acrylic polymers and copolymers which possess a side-chain mesogenic unit, similar to that of the main-chain LCP's. While the results of the blending studies of these high molecular weight materials were somewhat ambiguous as to compatibility, there are strong indications that the presence of the side-chain mesogen containing polymers does result in an improvement in the overall mechanical properties of the main-chain LCP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号