首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Graft copolymers with a polyimide backbone and poly(methyl methacrylate) side chains are investigated in dilute chloroform and ethyl acetate solutions via the methods of molecular hydrodynamics and optics. Copolymer samples are prepared through the “grafting from” method via atom-transfer radical polymerization with a multicenter polyimide macroinitiator. In solutions of copolymers with low degrees of functionalization Z (40%), supermolecular structures are formed as a result of interactions between the polyimide backbones. In samples with Z → 100%, the backbone is well screened by side chains; therefore, molecular solutions are formed in both solvents. The hydrodynamic and conformational behavior of samples with high functionalization degrees changes after the transition from ethyl acetate to chloroform owing to the different thermodynamic qualities of the solvents with respect to the copolymer components. In both solvents, the backbone tends to avoid contact with a poor solvent. This effect is more pronounced in the case of ethyl acetate. Macromolecules of the studied graft copolymers are characterized by high equilibrium rigidities (>40 nm) that are 10 times higher than the corresponding characteristics of aromatic polyimides.  相似文献   

2.
A series of tadpole-shaped block-graft amphiphilic copolymers, i.e., block copolymers consisting of a cylindrical hydrophilic brush block and a coiled hydrophobic block were synthesized using “grafting-through” atom transfer radical polymerization. A tadpole-shaped block-graft copolymer from polystyrene bromide and a methacryloyl-terminated poly(tert-butyl acrylate) was prepared first. Then, hydrolysis of the poly(tert-butyl acrylate) side chains to polyacrylic acid side chains provided tadpole-shaped block-graft amphiphilic copolymers, which formed pH responsive micelles in water, the latter being confirmed by dynamic light scattering and atomic force microscopy.  相似文献   

3.
Novel biodegradable amphiphilic graft copolymers containing hydrophobic poly(ester‐carbonate) backbone and hydrophilic poly(ethylene glycol) (PEG) side chains were synthesized by a combination of ring‐opening polymerization and “click” chemistry. First, the ring‐opening copolymerization of 5,5‐dibromomethyl trimethylene carbonate (DBTC) and ε‐caprolactone (CL) was performed in the presence of stannous octanoate [Sn(Oct)2] as catalyst, resulting in poly(DBTC‐co‐CL) with pendant bromo groups. Then the pendant bromo groups were completely converted into azide form, which permitted “click” reaction with alkyne‐terminated PEG by Huisgen 1,3‐dipolar cycloadditions to give amphiphilic biodegradable graft copolymers. The graft copolymers were characterized by proton nuclear magnetic resonance (1H NMR), Fourier transform infrared spectra and gel permeation chromatography measurements, which confirmed the well‐defined graft architecture. These copolymers could self‐assemble into micelles in aqueous solution. The size and morphologies of the copolymer micelles were measured by transmission electron microscopy and dynamic light scattering, which are influenced by the length of PEG and grafting density. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011.  相似文献   

4.
Novel, water-soluble thermoassociative graft copolymers based on high molecular weight (HMW) poly(ethylene oxide-co-glycidol) backbone and relatively short grafts of poly-N-isopropyl acrylamide (NIPAAm) were prepared. The copolymer precursors with two architectures (block and graft) were synthesized using Ca-amide-alkoxide initiators. The OH groups in the copolymer precursors have been utilized for grafting NIPAAm using ceric ion (Ce4+) redox initiation. The idea was to imprint the “smart” properties of PNIPAAm grafts into common HMW poly(ethylene oxide). The sensitive moieties undergo reversible association transitions by changing the temperature of dilute and semidilute aqueous solutions of the copolymers. Associative properties were studied by viscosity and rheology measurements. Two types of interactions, induced by heating, depending on the copolymer concentration namely intra- and intermolecular association were observed.  相似文献   

5.
A novel amphiphilic graft copolymer consisting of hydrophilic poly(acrylic acid) backbones and hydrophobic poly(butyl methacrylate) side chains was synthesized by successive atom transfer radical polymerization followed by hydrolysis of poly‐(methoxymethyl acrylate) backbone. A grafting‐from strategy was employed for the synthesis of graft copolymers with narrow molecular weight distributions (polydispersity index < 1.40). Hydrophobic side chains were connected to the backbone through stable C? C bonds instead of ester connections. Poly(methoxymethyl acrylate) backbone was easily hydrolyzed to poly(acrylic acid) backbone with HCl without affecting the hydrophobic side chains. The amphiphilic graft copolymer could form stable micelles in water. The critical micelle concentration in water was determined by a fluorescence probe technique. The morphology of the micelles was preliminarily explored with transmission electron microscopy and was found to be spheres. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 6857–6868, 2006  相似文献   

6.
Polystyrene of M?ω = 2.2 × 104 was alkylated with 4-nitrophthalimidomethyl groups as grafting sites. Several backbone polymers with various degrees of grafting sites (G = 2–100%) were prepared and characterized by elemental analysis, IR, 1H- and 13C-NMR, and viscosity measurements. “Living” poly(ethylene oxide) with narrow molecular-weight distribution was prepared in the presence of 15-crown-5, and grafted onto the 4-nitrophthalimidomethylated polystyrene. The nitro displacement reaction was fast and the grafting yield was quantitative (100%). The graft copolymers are highly soluble in water and in organic solvents. The intrinsic viscosities of the graft copolymers are higher than those of the backbone polymers. The intrinsic viscosities show an initial increase followed by a decrease as the degree of grafting increase.  相似文献   

7.
Graft copolymers containing poly(ethylene oxide) side chains on a polystyrene backbone have been synthesized. Styrene copolymers synthesized by free radical mechanism and containing between 5 and 15 mol % acrylamide or methacrylamide were used as backbones. The amide groups in the copolymers were ionized by using potassium tert-butoxide or potassium naphthalene, and grafting was achieved by utilizing the amide anions as initiator sites for the polymerization of ethylene oxide in 2-ethoxyethyl ether at 65°C. The graft copolymers were characterized with respect to molecular weight and composition using elemental analysis, NMR, gel permeation chromatography, IR, and viscosity measurements. The size of the side chains were between 600 and 2000 g/mol. GPC results from a hydrolyzed graft copolymer sample suggest a narrow size distribution for the poly(ethylene oxide) grafts. Solution properties of the graft copolymers were investigated in different toluene/methanol mixtures. The intrinsic viscosities of the graft copolymers were found to depend primarily on the poly(ethylene oxide) content rather than the graft density or the poly(ethylene oxide) chain length. © 1993 John Wiley & Sons, Inc.  相似文献   

8.
The post‐functionalization of poly(3‐hexylthiophene) (P3HT) via various synthetic routes is reported. Well‐defined and monofunctionalized ω‐thiol‐terminated P3HT, ω‐carboxylic acid‐terminated P3HT, ω‐acrylate‐terminated P3HT, and ω‐methacrylate‐terminated P3HT are obtained in high yields through a straightforward procedure. From those, different novel P3HT‐based graft copolymers are synthesized following two routes: “grafting onto” and “grafting through” (macromonomer polymerization) methods. The synthesis of three types of graft copolymers is described. Each one has “rod” P3HT‐grafted side chains on a “coil” main chain, which can be polyisoprene, poly(vinyl alcohol), or poly(butyl acrylate). Each copolymer is characterized by size‐exclusion chromatography and NMR.  相似文献   

9.
A new “grafting from” strategy for grafting of different monomers (methacrylates, acrylates, and acrylamide) on poly(vinylidene fluoride) (PVDF) backbone is designed using atom transfer radical coupling (ATRC) and atom transfer radical polymerization (ATRP). 4‐Hydroxy TEMPO moieties are anchored on PVDF backbone by ATRC followed by attachment of ATRP initiating sites chosen according to the reactivity of different monomers. High graft conversion is achieved and grafting of poly(methyl methacrylate) (PMMA) exhibits high degree of polymerization (DPn = 770) with a very low graft density (0.18 per hundred VDF units) which has been increased to 0.44 by regenerating the active catalyst with the addition of Cu(0). A significant impact on thermal and stress–strain property of graft copolymers on the graft density and graft length is noted. Higher tensile strain and toughness are observed for PVDF‐g‐PMMA produced from model initiator but graft copolymer from pure PVDF exhibits higher tensile strength and Young's modulus. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 995–1008  相似文献   

10.
Thermoresponsive brush copolymers with poly(propylene oxide‐ran‐ethylene oxide) side chains were synthesized via a “grafting from” technique. Poly(p‐hydroxystyrene) was used as the backbone, and the brush copolymers were prepared by random copolymerization of mixtures of oxyalkylene monomers, using metal‐free anionic ring‐opening polymerization, with the phosphazene base (t‐BuP4) being the polymerization promoter. By controlling the monomer feed ratios in the graft copolymerization, two samples with the same side‐chain length and different compositions were prepared, both of which possessed high molecular weights and low molecular weight distributions. The results from light scattering and fluorescence spectroscopy indicated that the brush copolymers in their dilute aqueous solutions were near completely solvated at low temperature and underwent slight intramolecular chain contraction/association and much more profound intermolecular aggregation at different stages of the step‐by‐step heating process. Above 50 °C, very turbid solutions, followed by macrophase separation, were observed for both of the samples, which implied that it was difficult for the brush copolymers to form stable nanoscopic aggregates at high temperature. All these observations were attributed, at least partly, to the distribution of the oxyalkylene monomers along the side chains and the overall brush‐like molecular architecture. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2320–2328, 2010  相似文献   

11.
Poly(vinylidene fluoride) (PVDF) is known for its biocompatibility, piezo and pyro‐electricity, and membrane forming capability. In order to tune its properties, modification through grafting from approach by atom transfer radical polymerization (ATRP) is preferred. Hydrophilic polymers like poly(ethylene glycol) methacrylate, poly(methacrylic acid), poly(dimethylaminoethyl methacrylate) (PDMAEMA), and so forth have been anchored from PVDF backbone in order to make permeation of water molecules through the PVDF based membranes. The successful solution grafting of PDMAEMA chains from PVDF backbone by ATRP resulted appreciable graft conversion and hence its bulk properties showed a significant change. This water soluble graft copolymer shows incredible mechanical and adhesive properties. PVDF‐g‐poly(n‐butyl methacrylate) generates honey‐comb porous film using “breath figure” technique. Recently, they have used further improvement of grafting where model ATRP initiators are anchored using atom transfer radical coupling and used them as macroinitiators for grafting. This approach simplified the grafting reactions even more and enabled successful grafting of a large number of monomers under relatively less drastic conditions with appreciable conversion compared with the previous conditions. This technique has resulted interesting solution properties, ion and electron conducting PVDF, antifouling membrane, super glue and super tough materials, capable of generating metal nanoparticles tunable with pH and temperature. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 2569–2584  相似文献   

12.
A well‐defined double hydrophilic graft copolymer, with polyacrylate as backbone, hydrophilic poly(ethylene glycol) and poly(methacrylic acid) as side chains, was synthesized via successive atom transfer radical polymerization followed by the selective hydrolysis of poly(methoxymethyl methacrylate) side chains. The grafting‐through strategy was first used to prepare poly[poly(ethylene glycol) methyl ether acrylate] comb copolymer. The obtained comb copolymer was transformed into macroinitiator by reacting with lithium diisopropylamine and 2‐bromopropionyl chloride. Afterwards, grafting‐from route was employed for the synthesis of poly[poly(ethylene glycol) methyl ether acrylate]‐g‐poly(methoxymethyl methacrylate) amphiphilic graft copolymer. The molecular weight distribution of this amphiphilic graft copolymer was narrow. Poly(methoxymethyl methacrylate) side chains were connected to polyacrylate backbone through stable C? C bonds instead of ester connections. The final product, poly[poly(ethylene glycol) methyl ether acrylate]‐g‐poly(methacrylate acid), was obtained by selective hydrolysis of poly(methoxymethyl methacrylate) side chains under mild conditions without affecting the polyacrylate backbone. This double hydrophilic graft copolymer was found be stimuli‐responsive to pH and ionic strength. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 4056–4069, 2008  相似文献   

13.
The grafting of the potassium alkoxide derivative of poly(ethylene oxide) on poly(methyl methacrylate) in homogeneous solution in toluene was studied. The alkoxide was prepared by reaction with potassium metal with methanolic potassium methoxide, or with potassium naphthalene. The last was the most suitable for the systematic investigation of the grafting process. Soluble graft polymers were formed, and essentially the initial poly(ethylene oxide) (PEO) and poly(methyl methacrylate) (PMMA) participated in the production of graft polymer. The composition of the graft polymers and the frequency of grafting of the side chains were determined by NMR. The solubility of the graft polymers in methanol and water increased with increasing PEO contents, while the melting ranges decreased. Fractionation of the crude graft polymers showed that the grafting reaction was random, and graft polymers containing one PEO side chain per about 10–170 MMA units were obtained.  相似文献   

14.
Anionic graft copolymers were synthesized through grafting of poly(ethylene glycol) monomethyl ether (MPEG) onto terpolymers containing succicinic anhydride groups. The backbone polymers were prepared through radical terpolymerization of maleic anhydride, styrene, and one of the following monomers: methyl methacrylate, ethylhexyl methacrylate, and diethyl fumarate. MPEG of different molecular weights were grafted onto the backbone through reactions with the cyclic anhydride groups. In this reaction one carboxylic acid group is formed together with each ester bond. The molecular weights of MPEG were found to influence the rate of the grafting reaction and the final degree of conversion. The graft copolymers were characterized by IR, GPC, and 1H-NMR. Thermal properties were examined by DSC. Graft copolymers containing 50% w/w of MPEG 2000 grafts were found to be almost completely amorphous, presumably because of crosslinking, and hydrogen bonding between carboxylic acid groups in the backbone and the ether oxygens in MPEG grafts. © 1995 John Wiley & Sons, Inc.  相似文献   

15.
Graft copolymers comprising poly(vinylidene fluoride‐co‐chlorotrifluoroethylene) backbone and poly(styrene sulfonic acid) side chains, i.e. P(VDF‐co‐CTFE)‐g‐PSSA were synthesized using atom transfer radical polymerization (ATRP) for composite nanofiltration (NF) membranes. Direct initiation of the secondary chlorinated site of CTFE units facilitates grafting of PSSA, as revealed by FT‐IR spectroscopy. The successful “grafting from” method and the microphase‐separated structure of the graft copolymer were confirmed by transmission electron microscopy (TEM). Wide angle X‐ray scattering (WAXS) also showed the decrease in the crystallinity of P(VDF‐co‐CTFE) upon graft copolymerization. Composite NF membranes were prepared from P(VDF‐co‐CTFE)‐g‐PSSA as a top layer coated onto P(VDF‐co‐CTFE) ultrafiltration support membrane. Both the rejections and the flux of composite membranes increased with increasing PSSA concentration due to the increase in SO3H groups and membrane hydrophilicity, as supported by contact angle measurement. The rejections of NF membranes containing 47 wt% of PSSA were 83% for Na2SO4 and 28% for NaCl, and the solution flux were 18 and 32 L/m2 hr, respectively, at 0.3 MPa pressure. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

16.
Polymers substituted with thio groups are useful for the photochemical synthesis of graft copolymers. Such copolymers have been prepared by the initial conversion of backbone polymers containing chlorinated substituents into polymers containing diethyldithiocarbamate (TC), isopropyl xanthate (IX) or mercaptobenzothiazole (BT) functionality. The photochemical reaction of monomers with these products produced graft copolymers. A variety of halogenated polymers were investigated as starting materials for these syntheses, including poly(vinyl chloride), chlorinated polyvinyl chloride), chlorinated polyethylene, chlorobutyl rubber and neoprene. Characteristics of the grafting reactions, including “pseudo-living” behavior and tandem grafting aspects, were investigated. Glass transitions of the grafted polymers were found to vary uniformly with composition for most of the grafted products.  相似文献   

17.
Conjugated graft copolymers consisting of a poly(3‐hexylthiophene) (P3HT) backbone and poly(9,9'‐dioctylfluorene) side chains (PF) with different grafting degrees were synthesized by the CuAAC reaction. The properties of these materials were studied by UV‐Vis and fluorescence spectroscopy. The former technique provides insight in their self‐assembly, while the latter is used to study the energy funneling from the PF side chains to the P3HT backbone. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1252–1258  相似文献   

18.
通过三甲基碘硅烷与聚二(2-甲氧基乙氧基)膦腈侧链上的醚键反应后水解得到侧链含部分羟基的聚膦腈,然后利用聚膦腈的侧链羟基在异辛酸亚锡催化作用下,引发己内酯单体开环聚合制备了聚膦腈-g-聚己内酯共聚物.该共聚物中聚己内酯链段的接枝率和侧链长度可通过改变三甲基碘硅烷和己内酯单体的投料来控制.  相似文献   

19.
Graft copolymers of poly(ethylene glycol) (PEG) on a chitosan backbone (PEG-g-chitosan) have been synthesized and their aqueous solution properties were investigated. At pH 6.5 the graft copolymers are 100% soluble, while chitosan phase separates from solution at those conditions. These interesting graft copolymers may be especially suitable as carriers for delivery of anionic drugs, such as proteins, glycosaminoglycans, and DNA plasmids or oligonucleotides.  相似文献   

20.
A “dark” copolyimide with regularly grafted side chains of polymethacrylic acid and a luminescence-labeled copolyimide containing an anthracene label covalently attached to side chains with an average polycondensation degree of the polyimide backbone of ~16 and an average polymerization degree of side poly(methacrylic acid) chains of ~100 are synthesized. Relaxation times τIMM characterizing the mobility of parts of side chains in solvents of different thermodynamic qualities for the backbone and side chains are determined through the polarized luminescence method. It is shown that, in a “common” solvent for the backbone and side chains, the values of τIMM are close to those characterizing the mobility of linear polymethacrylate chains. In selective solvents, changes in τIMM are related to not only changes in intramolecular interactions but also changes in the heterogeneity of the dynamic characteristics of parts of grafted chains arranged at different distances from the grafting point.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号