首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Copolyesters of 4-hydroxybenzoic acid (HBA) and 3-(4'-hydroxyphenoxy)benzoic acid were prepared by two different procedures. Either the acetyl derivatives were polycondensed in bulk at temperatures up to 300°C or they were polycondensed in an inert reactions medium (Marlotherm-S) at 340°C. Two analogous series of copolyesters were synthesized from 4-acetoxybenzoic acid (4-HBA) and 4-(3'-acetoxyphenoxy)benzoic acid. The copolyesters were characterized by elemental analyses, inherent viscosities, 1H- and 13C-NMR spectroscopy, WAXS and DSC measurements, and by optical microscopy. All copolyesters synthesized in solution were highly crystalline materials which were neither meltable nor soluble. Part of the copolyesters prepared by polycondensation in bulk were semi-crystalline, meltable, and soluble. The copolyester derived from 3-(4'-hydroxyphenoxy)benzoic acid proved to be thermotropic forming a nematic melt, whereas the isomeric copolyesters of 4-(3'-hydroxyphenoxy)benzoic acid only formed isotropic melts. © 1993 John Wiley & Sons, Inc.  相似文献   

2.
Three new series of thermotropic aromatic main-chain polymers were synthesized and studied by differential scanning calorimetry and hot-stage polarized microscopy. The polymers were random copolyesters of p-hydroxybenzoic acid (from 60 to 10 mol %), catechol (from 20 to 45 mol %), and one of the following dicarboxylic diacids: terephthalic acid (series 1 ), 2,6-naphtalenedicarboxylic acid (series 2 ), and 1,2-bis-p-carboxyphenoxy ethane (series 3 ). Copolyesters with more than 25 mol % catechol in their structures were soluble in common organic solvents such as chloroform. All the synthesized copolyesters showed hysteresis of the heat capacity at the mesophase glass transition region and nematic mesophases above their Tg's which were stable over very broad ranges of temperature. Copolyesters containing the 2,6-naphtylenedioyl group showed the most stable nematic phases due to the increased anisometry of the 2,6-naphtylenedioyl unit compared to that of the therephthaloyl or the 4-oxybenzoyl units. © 1992 John Wiley & Sons, Inc.  相似文献   

3.
The hyperbranched homopolyester of gallic acid (GA) was prepared by polycondensation of acetylated gallic acid in bulk. Copolyesters of gallic acid and 3-hydroxybenzoic acid (3-HBA) or β-(4-hydroxyphenyl)propionic acid (HPPA) were prepared via the silylated monomers. The degree of branching was varied in both series via the molar fraction of gallic acid. A model reaction with silylated 4-methoxybenzoic acid suggests that all three acetoxy groups of gallic acid can react by ester interchange reactions under the chosen reaction conditions. Furthermore, highly branched copolyesters derived from equimolar ratios of HPPA and 2-, 3-, or 4-hydroxybenzoic acid, vanillic acid, or 4-hydroxycinnamic acid were synthesized. All these copolyesters were found to be amorphous with glass transition temperatures (Tg's) far below that of the hyperbranched poly(gallic acid). © 1998 John Wiley & Sons, Inc. J. Polym. Sci. A Polym. Chem. 36: 2347–2357, 1998  相似文献   

4.
The polycondensation of 3-(4-hydroxy phenyl)-propionic acid, 4-Hypp, by means of acetanhydride or acetylchloride was conducted either in the presence or in the absence of a liquid reaction medium. DSC measurements, polarizing microscope, and X-ray diffraction studies indicate poly(4-Hypp) possesses at about 215°C a reversible first order transition between two solid phases. Copolyesters containing various mole ratios of 4-Hypp and 4-hydroxy benzoic acid, 4-Hybe, were prepared by bulk condensation with acetanhydride at 320°C. At 4-Hypp/4-Hybe ratios less than 1.0:1.5 the reaction product was heterogeneous, containing crystals of pure poly(4-Hybe). Neither increasing the reaction time nor the variation of the transesterification catalyst resulted in an entirely homogeneous copolyester. However, for 4-Hypp/4-Hybe ratios greater than 1.0:1.5, 13C NMR spectra indicate perfectly random sequences. Also, terpolyesters containing 3-chloro-4-hydroxy- or 3,5-dichloro-4-hydroxy-benzoic acid were heterogeneous with less than 30 mol % 4-Hypp. DSC measurements revealed for all polyesters a glass transition in the range of 55–78°C. Temperature dependent X-ray diffraction studies confirm that the solid phase is a s.c. LC-glss. Correspondingly low heat distortion temperatures were found by thermomechanical analyses. The copolyesters display under the polarizing microscope LC-phase up to temperatures of 450–480°C, where rapid thermal degradation prevents further investigations. In the case of the 4-Hypp/4-Hybe 1:1 copolyester, the LC-phase extends over a temperature range of about 400°C. TGA measurements indicate beginning thermal degradation at temperatures between 350 and 380°C.  相似文献   

5.
The synthesis of novel thermotropic liquid crystalline copolyesters derived from aliphatic hydroxy acid (glycolic acid, GA) and aromatic hydroxy acid (p-hydroxybenzoic acid, PHBA) via a melt-copolycondensation process in the presence of various catalysts was explored. The following three possible routes were checked: PHBA and GA in different feed ratios with or without a catalyst; PHBA and GA in different feed ratios with or without a catalyst in the presence of acetic anhydride as a condensation agent; and different PHBA derivatives were used to examine the reactivity of aromatic hydroxy acid. The copolycondensability, chemical structure, liquid crystallinity, textures and morphology, phase transition behaviors and thermal stability, and solubility were investigated by FTIR, NMR, DSC, TGA, and polarized-light microscope. It has been found that only the 60–70 mol % PHBA-containing copolyesters could exhibit a nematic liquid crystallinity. The as-prepared polymers were brittle due to relatively lower molecular weights. © 1994 John Wiley & Sons, Inc.  相似文献   

6.
6-Hydroxythioxanthone-2-carboxylic acid (HTCA) was prepared from commercial dimethylnitroterephthalate via 2-(4'-hydroxythiophenyl) terephthalic acid. HTCA was acetylated and polycondensed in an inert reaction medium at 350 or 400°C. An insoluble and infusible, highly crystalline polyester was obtained, which did not form whisker-like crystals. Furthermore, copolyesters with 4-hydroxybenzoic acid (4-HBA) were synthesized and whiskers were obtained at a molar ratio of 1 : 9 (in favor of 4-HBA). A meltable, nematic copolyester was prepared by cocondensation of silylated 6-acetoxythioxanthone-2-carboxylic acid and silylated 4-acetoxybenzoic acid in bulk. © 1994 John Wiley & Sons, Inc.  相似文献   

7.
Copolyesters containing ε-caprolactone and l-lactide or ε-caprolactone and δ-valerolactone at different compositions were synthesized by using tetrabutoxytitane Ti(OBu)4 at high temperature in bulk. A series of copolyesters were prepared by varying the compositions of both comonomers. These copolymers were characterized by using 1H NMR, 13C NMR, gel permeation chromatography (GPC), differential scanning calorimetry (DSC) and MALDI-TOF mass spectrometry. 13C NMR analysis gave an insight on their microstructure. Structural parameters of the copolymers were obtained by calculating the triad sequence fractions. Poly(ε-caprolactone-co-l-lactide) has a more alternate structure than poly(ε-caprolactone-co-δ-valerolactone). The potential use of these copolyesters in antifouling coatings was examined because of their solubility in aromatic solvent and their hydration and hydrolytic degradation. Paints based on these new degradable binders had a good antifouling activity in Atlantic Ocean (France).  相似文献   

8.
A series of fully aromatic copolyesters based on p‐acetoxybenzoic acid (p‐ABA), hydroquinone diacetate (HQDA), terephthalic acid (TPA), and m‐acetoxybenzoic acid (m‐ABA) were prepared by a modified melt‐polycondensation reaction. The copolyesters were characterized by DSC, thermogravimetric analysis, 1H NMR, polarized optical microscopy, X‐ray diffraction, and intrinsic viscosity measurements. The copolyesters exhibited nematic liquid‐crystalline phases in a broad temperature range of about 150 °C, when the content of linear (p‐ABA, HQDA, and TPA) units was over 67 mol %. DSC analysis of the anisotropic copolyesters revealed broad endotherms associated with the nematic phases, and the melting or flow temperatures were found to be in the processable region. The flow temperatures and crystal‐to‐nematic and nematic‐to‐isotropic transitions depend on the type of linear monomer units, and these transitions increased as the content of the p‐ABA units increased, as compared to the HQDA/TPA units. When the content of the p‐ABA units increased, as compared to other linear units (HQDA and TPA), the intrinsic viscosity and degree of crystallinity of the copolyesters also increased, implying a higher reactivity for p‐ABA in the p‐ABA/HQDA/TPA/m‐ABA polymer system. The aromatic region in the 1H NMR spectra of the copolyesters containing equal molar compositions of p‐ABA, HQDA, and TPA units were sensitive to the sequence distribution of aromatic rings. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 3263–3277, 2001  相似文献   

9.
Copolyesters containing naphthalene structure were synthesized from bis(hydroxyethyl)naphthalate (BHEN) or bis(hydroxybutyl)naphthalate (BHBN) and various aralkyloxy diols. The starting bis[4-(2-hydroxyethoxy)aryl] compounds were derived from a nucleophilic substitution of various bisphenols with ethylene carbonate in the presence of KI. Copolyesters having intrinsic viscosities of 0.45–0.60 dL/g were obtained by the melt polycondensation in the presence of metallic catalysts. The effect of reaction temperature and time on the formation of copolyesters were investigated to obtain an optimum condition for copolyesters manufacturing. Most copolyesters have better solubilities than polyethylene naphthalate (PEN) or polybutylene naphthalate (PBN) in aprotic solvents, such as N-methyl-2-pyrrolidone or m-cresol. The thermal properties of the copolyesters were investigated by the differential scanning calorimetry (DSC) and thermal gravimetric analysis (TGA). Glass transition temperatures (Tg) of copolyesters result from BHEN were in the range of 90–141°C, and 10% weight loss in nitrogen were all above 460°C. Another series of copolyesters result from BHBN have Tg in the range of 75–135°C, and 10% weight loss in nitrogen of over 420°C. © 1996 John Wiley & Sons, Inc.  相似文献   

10.
含4,4'-二羟基二苯酮热致液晶四元共聚酯的合成与表征董德文,韩平,倪玉山,丁孟贤,韩伟(中国科学院长春应用化学研究所长春130022)(吉林化工学院化工系吉林)关键词 热致液晶,共聚酯,向列型,二羟基二苯酮关于热致液晶芳香族聚酯的研究已有大量的报道...  相似文献   

11.
A series of copolyesters were prepared by the incorporation of p‐hydroxybenzoic acid (HBA), hydroquinone (HQ), and terephthalic acid (TA) into poly(ethylene terephthalate) (PET). On the basis of viscosity measurements, high molar mass copolyesters were obtained in the syntheses, and 1H‐NMR analyses indicated the total insertion of comonomers. They exhibit nematic phase above melting temperature, as observed by polarized light microscope (PLM). Their crystallization and melting behaviors were also studied by differential scanning calorimetry (DSC) and wide angle X‐ray diffraction (WAXD). It was found that these copolyesters are more crystalline than copolyesters prepared from PET and HBA. Introduction of HQ/TA disrupts longer rigid‐rod sequences formed by HBA, and thus enhances molecular motion and increases crystallization rate and crystallinity. Isothermal crystallization at solid phase polymerization conditions (up to 24 h at 200°C) resulted in increased copolymer randomness (by NMR) and higher melting point, the latter attributed to structural annealing. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 369–377, 1999  相似文献   

12.
Diacids with variable spacer length were prepared by condensation of trimellitic anhydride and ω-amino acids. From these diacids, homopolyesters were prepared by thermal condensation with the acetates of hydroquinone or 4,4′-dihydroxy biphenyl and a series of copolyesters containing 4-hydroxy benzoic acid. The same LC poly(ester imide)s could also be prepared in a “one-pot procedure” from trimellitic anhydrid, lactams, and bisphenol acetates. The differential scanning calorimetry (DSC) traces of most poly(ester imide)s exhibit two endotherms representing the solid → LC phase transition (Tm1) and the LC phase → isotropic melt transition (Tm2). Observation under the polarizing microscope and wide-angle X-ray scattering (WAXS) measurements suggest that the LC phase formed immediately above the melting points (Tm1) have a smectic character. Poly(ester imide)s of 4,4′-dihydroxybiphenyl possess higher melting points and a broader temperature range of the LC phase than those of hydroquinone. The copolyesters possess a nematic melt over a broad temperature range. Thermomechanical analyses under low pressure (0.05 kg/mm2) gave heat distortion temperatures close to the melting points (Tm1), and under high pressure (1 kg/mm2), values between Tm1 and the glass transition temperatures (Tg). Thermogravimetric measurements indicate that processing from the melt is feasible up to temperatures around 340°C.  相似文献   

13.
A series of fully aromatic, thermotropic polyesters, derived from 3-phenyl-4,4′-biphenol (MPBP), nonlinear 4,4′-benzophenone dicarboxylic acid (4,4′-BDA), and various other comonomers was prepared by the melt polycondensation method and characterized for their thermotropic liquid crystalline behavior by a variety of experimental techniques. The homopolymer of MPBP with 4,4′-BDA had a fusion temperature (Tf) at 240°C, exhibited a nematic liquid crystalline phase, and had a narrow liquid crystalline range of 60°C. All of the copolyesters of MPBP with 4,4′-BDA and either 30 mol % 4-hydroxybenzoic acid (HBA), 6-hydroxy-2-naphthoic acid (HNA) or 50 mol % terephthalic acid (TA), 2,6-naphthale-nedicarboxylic acid (2,6-NDA) and low Tf values in the range of 210–230°C, exhibited a nematic phase, and had accessible isotropization transitions (Ti) in the range of 320–420°C, respectively. As expected, each of them had a broader range of liquid crystalline phase than the homopolymer. They had a “frozen” nematic, glassy order as determined with the wide-angle X-ray diffraction (WAXD) studies. The morphology of each of the “as-made” polyesters had a fibrous structure as determined with the scanning electron microscopy (SEM), which arises because of the liquid crystalline domains. Moreover, they had higher glass transition temperatures (Tg) in the range of 167–190°C than those of other liquid crystalline polyesters, and excellent thermal stabilities (Td) in the range of 500–533°C, respectively. © 1995 John Wiley & Sons, Inc.  相似文献   

14.
含二羟基二苯酮的系列热致液晶共聚酯的合成和表征──Ⅲ.含4,4'-二羟基二苯砜结构的共聚酯董德文,池振国,倪玉山,丁孟贤(中国科学院长春应用化学研究所长春130022)陈玉(东北师范大学分析测试中心长春130024)关键词4,4'-二羟基二苯酮,热致...  相似文献   

15.
Poly(ethylene terephthalate)-poly(lactic acid) (PET-PLLA) copolyesters were synthesized by the melt reaction of bis(2-hydroxyethyl terephthalate) (BHET) with l-lactic acid oligomers (OLLA) in the presence of SnCl2, H2O-p-toluene sulfonic acid, H2O catalytic system. The 1H and 13C NMR studies confirm the incorporation of lactate units in PET chains after reaction. Copolyesters containing nearly equimolar terephthalate/lactate ratio are not completely random and present some block-copolymer character, while the microstructure of PET-rich copolyesters is a random one. Due to a longer PET sequence length, the latter exhibit a melting point close to 210 °C while the other ones are amorphous. SEC/MALDI-TOF MS off-line coupling was used to obtain the absolute average molar masses of the copolyesters. The results indicate that the conventional polystyrene calibration method leads to a strong overestimation of PET-PLLA molar masses, while the determined by NMR is much closer to the SEC/MALDI value.  相似文献   

16.
Hydrogen-bonded blends based on smectic side group functionalized LC copolymers containing 4-alkyloxybenzoic acid fragments (proton donor) and a non-mesogenic low molecular mass dopant 4-cyanophenyl pyridine-4-carboxylate or 4-methoxyphenyl-d4 pyridine-4-carboxylate (proton acceptor) were obtained. The blends containing 10-35 mol % of low molecular weight dopant form nematic (I-N-SmA) or re-entrant SmA phases (I-SmA-N-SmAre). The temperature dependence of the order parameter S, the birefringence Δn, and the splay K 1 and bend K 3 elastic constants of the nematic phase were studied by 2H NMR spectroscopy and the Fréedericksz method of threshold transitions in a magnetic field. A mechanism for the destruction of the SmA phase and the formation of the nematic phase in the hydrogen-bonded blends is suggested.  相似文献   

17.
以4,4′-(α,ω-亚烷基二酰氧)二联苯甲酰氯(M1)、顺式-4,4′-双(4-羟基苯基偶氮)二苯并-18-冠-6(M2)、反式-4,4′-双(4-羟基苯基偶氮)二苯并-18-冠-6(M3)和1,10-癸二醇(M4)为单体,通过溶液共缩聚反应,合成了两个系列新的含联苯型液晶基元和偶氮型冠醚环的主链型液晶共聚酯.共聚酯的[η]在0·25~0·35和0·27~0·38之间.单体的化学结构通过IR、UV-Vis、1H-NMR、MS和元素分析等方法确证.共聚酯的性质采用[η]、DSC、TGA、WAXD和POM等方法进行了研究.发现所有的共聚酯加热到各自熔融温度以上都能形成向列相液晶态,可以观察到向列相的丝状织构或纹影织构或球粒织构.共聚酯的熔融温度(Tm)和各向同性温度(Ti)随共聚酯分子中柔性间隔基长度的增加而有规律地降低,含反式冠醚环的共聚酯的Tm和Ti均高于相应含顺式冠醚环的共聚酯的Tm和Ti.  相似文献   

18.
hermotropic liquid crystalline copolyesters were synthsized from his(4-hydroxyphenyl) methanone (BHP), tereplithalic acid (TPA), p-hydroxybenzoic acid (PHB) and dihydroxydiphenyl sulfone(DPS). The properties of the copolyesters were characterized by polarized microscope with a hot stage, wide angle X-ray diffraction and differential scanning calorimetry. The results show that the copolyesters containing the BHP exhibit nematic liquid crystallinity.  相似文献   

19.
Starting from commercial S- or R-3-bromo-2-methylpropanol, several new spacer diols were prepared. These spacers were polycondensed with the acid chloride of N-(4′-carboxyphenyl)trimellitimide. The resulting poly(ester-imide)s were characterized by elemental analyses, viscosity measurements, 1H-NMR spectroscopy, DSC- and WAXD-measurements and optical microscopy. The poly(ester-imide)s derived from chiral, aliphatic spacers form layer structures in the solid state, but no liquid crystalline phase. With nonsymmetrical, nonchiral semialiphatic spacers, poly(ester-imide)s were obtained, which form a smectic E or H phase in the solid state, a smectic-A or -C phase in the melt, and a nematic phase, when the spacer possesses an odd number of CH2 groups. The polycondensation of a chiral semialiphatic spacer yielded thermotropic poly(ester-imide)s with either S- or R-configuration. WAXD patterns measured with synchrotron radiation at various temperatures proved that a layer structure exists in the solid state (smectic-E* or H*) and a chiral smectic-A* or -C* phase plus a cholesteric phase in the melt. A 1 : 1 blend of the S- and R-polyesters was also studied, but did not show unusual features. © 1995 John Wiley & Sons, Inc.  相似文献   

20.
Hydrogen-bonded blends based on smectic comb-shaped functionalized LC copolymers containing alkyloxy-4-hydroxybenzoic acid fragments (proton donor) and the low molecular weight dopant 4-(4-pyridyloyl)cyanobenzoate (proton acceptor) were obtained. It was observed that blends containing 10–25 mol-% of low molecular weight dopants form a reentrant nematic phase (SmA-RN-SmA-I). The blend behavior in the magnetic field was studied, and the orientational elastic constants of the RN phase were determined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号