首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The ionic conductivity, lithium ion transference number, electrochemical stability, and thermal property of solid polymer electrolytes composed of poly(ethylene oxide) (PEO) and poly(lithium carboxylate)s, (poly(lithium acrylate) (Poly(Li-A)) or poly(lithium fumarate) (Poly(Li-F)), with and without BF3·OEt2 were investigated. The ionic conductivities of all solid polymer electrolytes were enhanced by one to two orders of magnitude with addition of BF3·OEt2 because the dissociation of lithium ion and carboxylate anion was promoted by the complexation with BF3. The lithium ion transference number in the solid polymer electrolytes based on poly(lithium carboxylate)s showed relatively high values of 0.41–0.70, due to the suppression of the transport of counter anion by the use of a polymeric anion. The solid polymer electrolytes with addition of BF3·OEt2 showed good electrochemical stability.  相似文献   

2.
A solid-state membrane of a polymer/ionic liquid miscible mixture, poly(methyl methacrylate) (PMMA) and 1-butyl-3-methylimidazolium hexafluorophosphate (BMIMPF6) doped with lithium perchlorate (LiClO4), was prepared and characterized. Miscibility, segmental dynamics, glass transition and ionic conductivity were investigated. Based on the results from differential scanning calorimetry (DSC) and dynamic mechanical thermal analysis (DMTA), the system is fully miscible and of single phase. Broadening of the glass transition was observed when increasing the amount of ionic liquid, which can be attributed to mobility and flexibility differences between the polymer and ionic liquid. A large dynamical asymmetry and intrinsic mobility difference allow segmental and structural motion/relaxation over a wider temperature range by increasing the amount of ionic liquid. Saturation recovery spin–lattice relaxation time (T1) versus temperature obtained from 7Li nuclear magnetic resonance (NMR) showed high mobility of lithium ions, which was almost temperature independent. Lithium ion conductivity significantly increases with increasing ionic liquid amount. It is concluded that lithium ion mobility and its conduction is positively correlated to segmental dynamics of ion carriers in this model system, which is more noticeable in mixtures with higher amounts of the ionic liquid.  相似文献   

3.
Polymer electrolyte membranes, comprising of poly(methyl methacrylate) (PMMA), lithium tetraborate (Li2B4O7) as salt and dibutyl phthalate (DBP) as plasticizer were prepared using a solution casting method. The incorporation of DBP enhanced the ionic conductivity of the polymer electrolyte. The polymer electrolyte containing 70 wt.% of poly(methyl methacrylate)–lithium tetraborate and 30 wt.% of DBP presents the highest ionic conductivity of 1.58 × 10−7 S/cm. The temperature dependence of ionic conductivity study showed that these polymer electrolytes obey Vogel–Tamman–Fulcher (VTF) type behaviour. Thermogravimetric analysis (TGA) was employed to analyse the thermal stability of the polymer electrolytes. Fourier transform infrared (FTIR) studies confirmed the complexation between poly(methyl methacrylate), lithium tetraborate and DBP.  相似文献   

4.
Solid polymer electrolyte (SPE) composites, which are composed of poly(ethylene oxide) (PEO), mesoporous silica (SBA-15), and lithium salt were prepared in order to investigate the influence of SBA-15 content on the ionic conductivity of the composites. The ionic conductivity of the SPE composites was monitored by frequency response analyzer (FRA), and the crystallinity of the SPE composites was evaluated by using XRD. As a result, the addition of SBA-15 to the polymer mixture inhibited the growth of PEO crystalline domain, due to the mesoporous structure of the SBA-15. Also, the PEO16LiClO4/SBA-15 composite electrolytes show an increased ion conductivity as a function of SBA-15 content up to 15 wt.%. These ion conductivity characteristics are dependent on crystallinity with SBA-15 content.  相似文献   

5.
In this paper, olivine-type LiInSiO4 and LiInGeO4 as fast ionic conductors are predicted by ab initio density functional studies. The nudged elastic band approach showed extremely small energy barrier for lithium ion hopping to neighboring sites with 0.23 eV for LiInGeO4 and 0.36 eV for LiInSiO4. However, formation energy for the intrinsic defects including lithium ion vacancy sites is expected to be large (more than ~1.5 eV), which suppresses ionic conductivity severely. Therefore it is expected that doping these olivine-type materials with higher valent cations may be a better option to create lithium ion vacancies.  相似文献   

6.
Mesoporous carbon (MC) was utilized to increase the mesoporosity of LiCoO2 composite cathode. Graphite powder (GP) was chosen as a standard of comparison because of its very low mesoporosity. Compared with MC, GP has similar particle size, lower specific surface area, and higher electronic conductivity. Acetylene black (AB) exists in the form of chains of nanoparticles. With all other factors held constant, the mixture of AB and MC (ABMC)-loaded LiCoO2 composite cathode (ABMC cathode) was superior to the mixture of AB and GP (ABGP)-loaded LiCoO2 composite cathode (ABGP cathode). The reason is described as follows. Both GP and MC form a conductive network with AB chains. ABGP cathode has higher electronic conductivity than ABMC cathode. But the ionic conductivity of the ABMC cathode is more easily enhanced than the ABGP cathode because the former has much greater mesoporosity. In addition, the mesopores absorb and retain electrolyte solution and then provide buffer lithium ions for quick electrochemical reactions, so shortening the lithium ion transfer path in the composite cathode.  相似文献   

7.
In this paper, the results of preliminary studies of two new solvent-free polymer electrolytes based on poly(trimethylene carbonate), p(TMC), with lithium trifluoromethanesulphonate, (triflate), and lithium perchlorate are described. Thin films of these electrolytes were obtained by evaporation of solvent from homogeneous mixtures of known masses of host polymer and salt. Electrolytes with compositions of n between 1.5 and 85, where n represents the molar ratio of (O=COCH2CH2CH2O) units per lithium ion, have been prepared. These solvent-free electrolytes were characterized by measurements of total ionic conductivity, differential scanning calorimetry (DSC) and thermogravimetry (TGA). As expected from previous studies with these salts in poly(ethylene oxide), PEO, the triflate-based system showed superior thermal stability but with a lower total ionic conductivity than that of the perchlorate-containing electrolyte. The highest conductivity (approximately 3×10−4 Ω−1 cm−1) was found at 95°C with the electrolyte composition of (TMC)2LiClO4.  相似文献   

8.
A new series of blended polymer electrolytes based on a boroxine polymer (BP) with poly(ethylene oxide) (PEO), an ethylene oxide–propylene oxide copolymer or poly(methyl methacrylate) were prepared. Good room temperature mechanical properties were exhibited by electrolytes containing in excess of 30% PEO. Cationic transference number measurements indicated that a slight improvement in lithium ion conductivity could be achieved by using a mixture of LiCF3SO3 and LiN(CF3SO2)2 as the electrolyte salt. Electrolytes incorporating significant proportions of BP exhibited reduced lithium–polymer electrolyte interfacial resistance.  相似文献   

9.
A novel poly(ethylene oxide) (PEO)-based nanocomposite polymer electrolyte (NCPE) has been developed by using nanosized, high surface area ZnAl2O4 with a mesopore network as the filler. X-ray diffraction (XRD), differential scanning calorimetry (DSC), and field emission scanning electron microscopy (FESEM) were used to characterize the NCPE. The results showed that the presence of the nanosized ZnAl2O4 powder leads to a reduction in the crystallinity of the PEO phase. The ionic conductivity and lithium ion transference number of the PEO-based polymer electrolyte were enhanced by the addition of the nanosized ZnAl2O4 powder. A broad electrochemical stability window suggests that the PEO-LiClO4-ZnAl2O4 NCPE is a viable candidate for the electrolyte material in lithium polymer batteries.  相似文献   

10.
A sodium ion conducting polymer electrolyte based on poly (vinyl alcohol) (PVA) complexed with sodium bromide (NaBr) was prepared using solution cast technique. Several experimental techniques such as XRD, FTIR, SEM, temperature-dependant conductivity and transference number measurements have been performed. XRD and FTIR studies confirm the complexation of salt with the polymer. Surface morphology was studied using Scanning Electron Microscopy. DC conductivity was measured in the temperature range of 303–373 K, and the conductivity was found to increase with the increase of dopant concentration as well as temperature. Transference number data suggests that the charge transport in this polymer electrolyte system is mainly due to ions. Using these polymer electrolyte films, electrochemical cells were fabricated with configuration Na/(PVA:NaBr)/V2O5 and Na/(PVA:NaBr)/(I2+C+electrolyte) and their discharge characteristics like open circuit voltage (OCV), short circuit current (SCC), power density, energy density were evaluated and compared. Paper presented at the Third International Conference on Ionic Devices (ICID 2006), Chennai, Tamilnadu, India, Dec. 7–9, 2006.  相似文献   

11.
Free-standing composite polymer membranes comprising of high molecular weight poly (ethylene oxide) (PEO) complexed with lithium perchlorate (LiClO4) and Li6La2BaTa2O12 (LLBTO) garnet oxide as filler were developed via standard solution-casting method. The as-synthesized composite membranes were investigated through powder x-ray diffraction (PXRD), differential scanning calorimetry (DSC), scanning electron microscopy (SEM), and impedance spectroscopy techniques for their phase, thermal, morphological, and electrical properties, respectively. The lithium ion conductivity of polymer composite membranes consisting of PEO8/LiClO4 with various weight percents (5, 10, 15, 20, 25, and 30) of LLBTO were evaluated. We demonstrated a significant enhancement in Li+ conductivity with the addition of LLBTO to the polymer-lithium salt complex. Among the investigated membranes, the composite containing 20 LLBTO wt% garnet oxide exhibits maximized room temperature (30 °C) Li+ conductivity of 2.03 × 10?4 S cm?1 and electrochemical stability greater than 4.5 V.  相似文献   

12.
采用溶液浇铸法将N-甲基-N-丙基哌啶二(三氟甲基磺)亚胺(PP13TFSI)、二(三氟甲基磺)亚胺锂与偏氟乙烯-六氟丙烯共聚物(P(VdF-HFP))混合制备离子液体凝胶聚合物电解质(ILGPEs). 通过扫描电子显微镜观察发现,这种离子液体凝胶聚合物电解质由于液体相的均匀分布而具有疏松的结构. 采用电化学阻抗、计时电流法、线性扫描伏安法测试了电解质的离子电导率、锂离子迁移数和电化学窗口. 室温下离子液体凝胶聚合物电解质的离子电导率和锂离子迁移数分别是0.79 mS/cm和0.71,电化学窗口为0~5.1 Vvs. Li+/Li. 电池性能测试表明,这种离子液体凝胶聚合物电解质在Li/LiFePO4电池中是稳定的,放电容量在30、75和150mA/g倍率下分别为135、117和100 mAh/g,电池经100个循环后容量保持在100%而几乎没有衰减.  相似文献   

13.
Solid-type polymer nanocomposite electrolyte (PNCE) comprising poly(ethylene oxide) (PEO), lithium perchlorate (LiClO4) and montmorillonite (MMT) nano-platelets were synthesized by direct melt compounded hot-press technique at 70 °C under 3 tons of pressure. The spectra of complex dielectric function, electric modulus and alternating current (ac) electrical conductivity, and complex impedance plane plots of these materials were investigated in the frequency range 20 Hz to 1 MHz at ambient temperature. The variation of electrode polarization and ionic conduction relaxation times with MMT concentration up to 20 wt.% confirms their strong correlation with direct current ionic conductivity. The predominance of exfoliated MMT structures in PEO matrix and their effect on cation conduction mechanism and ion pairing were discussed by considering a supramolecular transient cross-linked structure. The normalized ac conductivity as a function of scaled frequency of these PNCE materials obey the universal time–concentration superposition behaviour alike the disordered solid ionic conductors.  相似文献   

14.
《Solid State Ionics》2006,177(26-32):2683-2686
New type polymer electrolyte films based on poly(acrylonitrile), (PAN), and cyanoethylated poly(vinyl alcohol), (CN-PVA), were prepared and their conducting behaviors were investigated. CN-PVA was prepared from poly(vinyl alcohol), (PVA) and acrylonitrile in the presence of sodium hydroxide and quaternary ammonium halide as a phase transfer catalyst. Free standing PAN- and CN-PVA-based electrolyte films were prepared by casting the propylene carbonate (PC) solution containing PAN, CN-PVA and LiClO4 and removing some amount of PC. Ionic conductivity of the electrolyte film, (PAN)10(CN-PVA) 10(LiClO4)8(PC)4 composite film was 14.6 mS cm 1 at 30 °C and 22.4 mS cm 1 at 60 °C. FTIR results for the electrolyte films suggest that the nitrile groups in the CN-PVA matrix mainly interact with the lithium ions in the films and enhance dissolution of the lithium salt in the electrolyte films.  相似文献   

15.
The polymer–salt complex with high molecular weight poly(vinyl chloride) (PVC) as the host polymer and lithium sulphate (Li2SO4) as the dopant salt are constructed in the form of thin film. Ionic conductivity studies in the temperature range of 303–373 K are performed for polymer complexes with 75% and 85% PVC. Arrhenius and Vogel–Tamman–Fulcher (VTF) behaviour was observed before and after the Tg of polymer, respectively. Dielectric constant and electrical modulus were analyzed and it was concluded that the films had ion conducting potential. Fourier transform infrared (FTIR) study confirmed that complexation occurred between PVC and Li2SO4.  相似文献   

16.
V. Thangadurai  W. Weppner 《Ionics》2000,6(1-2):70-77
We report the synthesis and lithium ion conductivity of di-, tri-, tetra- and hexavalent metal ion B-site substituted (Li,La)TiO3(LLT) perovskites. All 5–10 mol% Mg, Al, Mn, Ge, Ru and W ion substituted LLTs crystallize in a simple cubic or tetragonal perovskite structure. Among the oxides investigated, the Al-substituted perovskite La0.55Li0.360.09Ti0.995Al0.005O3 (□=vacancy) exhibits the highest lithium ion conductivity of 1.1 × 10−3 S/cm at room temperature which is slightly higher than that of the undoped (Li,La)TiO3 perovskite (8.9 × 10−4 S/cm) at the same temperature. The lithium ion conductivity of substituted LLTs does not seem to depend on the concentration of the A-site ion vacancies and unit cell volume. The high ionic conductivity of Al-substituted LLT is attributed to the increase of the B(Al)-O bond and weakening of the A(Li,La)-O bond. The conductivity behavior of the doped LLT is being described on the basis of Gibbs free energy considerations.  相似文献   

17.
The polyvinylidene difluoride-co-hexafluoropropylene (PVdF-HFP) nanocomposite solid polymer electrolyte films were developed by solution-casting method. PVdF-HFP as a polymer host, lithium perchlorate (LiClO4) as a salt for lithium ion, and ZnO nanoparticles as fillers were used to form the nanocomposite solid polymer electrolyte films. All the prepared samples were characterized by X-ray diffraction (XRD), differential scanning calorimetry, and scanning electron microscopy. The XRD patterns of the pure and nanocomposite solid polymer electrolyte samples indicate the formation of amorphous phase with 17.5 wt.% of lithium salt and ZnO fillers up to 3 wt.%. The total conductivity and lithium ion transference number were studied at room temperature by using impedance spectroscopy and Wagner’s polarization methods. The highest conductivity at room temperature for solid polymer electrolyte and nanocomposite solid polymer electrolyte are found to be 3.208?×?10?4 and 1.043?×?10?3 S/cm, respectively. Similarly, the lithium ion transference number is evaluated for the optimized solid polymer electrolyte and nanocomposite solid polymer electrolyte films with 3 wt.% of ZnO fillers. And it is found that ionic transference number could be enhanced from 92 to 95 % with the addition of nanosized ZnO fillers to the solid polymer electrolyte.  相似文献   

18.
Experimental investigations on a sodium ion conducting gel polymer electrolyte nanocomposite based on poly(vinylidene fluoride-co-hexafluoropropylene) (PVdF-HFP), dispersed with silica nanoparticles are reported. The gel nanocomposites have been obtained in the form of dimensionally stable, transparent and free-standing thick films. Physical characterization by X-ray diffraction (XRD), Fourier transform Infra-red (FTIR) spectroscopy and Scanning electron microscopy (SEM) have been performed to study the structural changes and the ion-filler-polymer interactions due to the dispersion of SiO2 nanoparticles in gel electrolytes. The highest ionic conductivity of the electrolyte has been observed to be 4.1 × 10−3 S cm− 1 at room temperature with ~ 3 wt.% of SiO2 particles. The temperature dependence of the ionic conductivity has been found to be consistent with Vogel-Tammen-Fulcher (VTF) relationship in the temperature range from 40 to 70 °C. The sodium ion conduction in the gel electrolyte film is confirmed from the cyclic voltammetry, impedance analysis and transport number measurements. The value of sodium ion transport number (tNa+) of the gel electrolyte is significantly enhanced to a maximum value of 0.52 on the 15 wt.% SiO2 dispersion. The physical and electrochemical analyses indicate the suitability of the gel electrolyte films in the sodium batteries. A prototype sodium-sulfur battery, fabricated using optimized gel electrolyte, offers the first discharge capacity of ~165 mAh g− 1 of sulfur.  相似文献   

19.
Hyperbranched polymers (HBPs) with different terminal groups and different ethylene oxide (EO) chain lengths were prepared, and the influence of the HBP structures including molecular weights and molecular weight distribution on the ionic conductivity and the mechanical property of the composite polymer electrolytes composed of poly (ethylene oxide) (PEO), HBP, BaTiO3 as a ceramic filler, and LiN(CF3SO2)2 as a lithium salt were investigated. It was found that the molecular weights of the HBP do not affect significantly the ionic conductivity, but the molecular weight distribution might affect it, and also further branching at the terminals of the HBP led to a decrease in the ionic conductivity. The HBP with longer EO chain length was effective for enhancement of the ionic conductivity in comparison with the HBP with shorter one. The increase in cross-linkable groups (acryloyl group) at the terminals of the HBP improved the tensile strength, but caused the ionic conductivity to decrease. Loosely cross-linked composite polymer electrolyte showed higher ionic conductivity and higher tensile strength than no cross-linked one. Paper presented at the Patras Conference on Solid State Ionics — Transport Properties, Patras, Greece, Sept. 14 – 18, 2004.  相似文献   

20.
Taku Onishi 《Solid State Ionics》2009,180(6-8):592-597
We performed hybrid-DFT calculations for La2/3 ? xLi3xTiO3 (LLT) with lithium ion conductivity, in order to investigate the detailed lithium ion conductive mechanism from the viewpoint of molecular orbital (MO) method. It was concluded that the very ionic lithium ion in bottleneck accelerates the lithium ion conduction. The calculated MO shows no chemical bonding between lithium ion and other ions. In comparison with the perovskite-type trivalent titanium oxide of LaTiO3, the effect of the titanium's reduction was also investigated. We showed the possibility of the high lithium conductivity in LaTiO3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号